Advertisement
Research Article| Volume 3, ISSUE 2, P67-73, March 2009

Species identification using the cytochrome b gene of commercial turtle shells

Published:December 01, 2008DOI:https://doi.org/10.1016/j.fsigen.2008.10.005

      Abstract

      Turtle shells and their gelled products are familiar in some countries as foods, tonics and medicines. These shells may come from endangered and protected species, requiring the identification of the species present to enforce national and international legislation. We report on the design of five combinations of primer pairs for the identification of turtle shells and shell fragments used as ornaments, food products and medicines. The types of samples used are those encountered frequently and will typically contain highly degraded DNA. The success rate for species identification using the test described is dependent upon the choice of primer sets used and the length of the expected amplification product. Gelled products were simulated by the process of decoction for up to 12 h, after which all the turtle species could be identified from the liquid samples. This study establishes a method for the identification of commercial turtle shells and illustrates a simulated case using gelled products.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hsieh H.M.
        • Huang L.H.
        • Tsai L.C.
        • Liu C.L.
        • Kuo Y.C.
        • Hsiao C.T.
        • Linacre A.
        • Lee J.C.-I.
        Species Identification of Kachuga tecta using the cytochrome b gene.
        J. Forensic Sci. 2006; 51: 52-56
        • Wu P.
        • Zhou K.
        • Xu L.
        • Teng J.
        Molecular identification of the Chinese drug turtle shells.
        Yao Xue Xue Bao. 1998; 33: 304-309
        • van der Kuyl A.C.
        • Ph Ballasina D.L.
        • Dekker J.T.
        • Maas J.
        • Willemsen R.E.
        • Goudsmit J.
        Phylogenetic relationships among the species of the genus Testudo (Testudines: Testudinidae) inferred from mitochondrial 12S rRNA gene sequences.
        Mol. Phylogenet. Evol. 2002; 22: 174-183
        • Austin J.J.
        • Arnold E.N.
        Ancient mitochondrial DNA and morphology elucidate an extinct island radiation of Indian Ocean giant tortoises (Cylindraspis).
        Proc. R. Soc. Lond. B. Biol. Sci. 2001; 268: 2515-2523
        • Osentoski M.F.
        • Lamb T.
        Intraspecific phylogeography of the gopher tortoise. Gopherus polyphemus: RFLP analysis of amplified mtDNA segments.
        Mol. Ecol. 1995; 4: 709-718
        • Caccone A.
        • Amato G.
        • Gratry O.C.
        • Behler J.
        • Powell J.R.
        A molecular phylogeny of four endangered Madagascar tortoises based on mtDNA sequences.
        Mol. Phylogenet. Evol. 1999; 12: 1-9
        • Quinn T.W.
        • Mindell D.P.
        Mitochondrial gene order adjacent to the control region in crocodile, turtle, and tuatara.
        Mol. Phylogenet. Evol. 1996; 5: 344-351
        • Zardoya R.
        • Meyer A.
        Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtle, Pelomedusa subrufa.
        Gene. 1998; 216: 149-153
        • Zardoya R.
        • Meyer A.
        Complete mitochondrial genome suggests diapsid affinities of turtles.
        Proc. Natl. Acad. Sci. USA. 1998; 95: 14226-14231
        • Lenk P.
        • Fritz U.
        • Joger U.
        • Wink M.
        Mitochondrial phylogeography of the European pond turtle, Emys orbicularis (Linnaeus 1758).
        Mol. Ecol. 1999; 8: 1911-1922
        • Weisrock D.W.
        • Janzen F.J.
        Comparative molecular phylogeography of North American softshell turtles (Apalone): implications for regional and wide-scale historical evolutionary forces.
        Mol. Phylogenet. Evol. 2000; 14: 152-164
        • Bowen B.W.
        • Clark A.M.
        • Abreu-Grobois F.A.
        • Chaves A.
        • Reichart H.A.
        • Ferl R.J.
        Global phylogeography of the ridley sea turtles (Lepidochelys spp.) as inferred from mitochondrial DNA sequences.
        Genetica. 1997; 101: 179-189
        • Bowen B.W.
        • Nelson W.S.
        • Avise J.C.
        A molecular phylogeny for marine turtles: trait mapping, rate assessment, and conservation relevance.
        Proc. Natl. Acad. Sci. USA. 1993; 90: 5574-5577
        • Alvarez Y.
        • Mateo J.A.
        • Andreu A.C.
        • Diaz-Paniagua C.
        • Diez A.
        • Bautista J.M.
        Mitochondrial DNA haplotyping of Testudo graeca on both continental sides of the Straits of Gibraltar.
        J. Hered. 2000; 91: 39-41
        • Cao Y.
        • Sorenson M.D.
        • Kumazawa Y.
        • Mindell D.P.
        • Hasegawa M.
        Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes.
        Gene. 2000; 259: 139-148
        • Serb J.M.
        • Phillips C.A.
        • Iverson J.B.
        Molecular phylogeny and biogeography of Kinosternon flavescens based on complete mitochondrial control region sequences.
        Mol. Phylogenet. Evol. 2001; 18: 149-162
        • FitzSimmons N.N.
        • Moritz C.
        • Limpus C.J.
        • Pope L.
        • Prince R.
        Geographic structure of mitochondrial and nuclear gene polymorphisms in Australian green turtle populations and male-biased gene flow.
        Genetics. 1997; 147: 1843-1854
        • Seddon J.M.
        • Georges A.
        • Baverstock P.R.
        • McCord W.
        Phylogenetic relationships of chelid turtles (Pleurodira: Chelidae) based on mitochondrial 12S rRNA gene sequence variation.
        Mol. Phylogenet. Evol. 1997; 7: 55-61
        • Dutton P.H.
        • Davis S.K.
        • Guerra T.
        • Owens D.
        Molecular phylogeny for marine turtles based on sequences of the ND4-leucine tRNA and control regions of mitochondrial DNA.
        Mol. Phylogenet. Evol. 1996; 5: 511-521
        • Kumazawa Y.
        • Nishida M.
        Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles.
        Mol. Biol. Evol. 1999; 16: 784-792
        • Seddon J.M.
        • Baverstock P.R.
        • Georges A.
        The rate of mitochondrial 12S rRNA gene evolution is similar in freshwater turtles and marsupials.
        J. Mol. Evol. 1998; 46: 460-464
        • Bourjea J.
        • Lapegue S.
        • Gagnevin L.
        • Broderick D.
        • Mortimer J.A.
        • Ciccione S.
        • Roos D.
        • Taquet C.
        • Grizel H.
        Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean.
        Mol. Ecol. 2007; 16: 175-186
        • Naro-Maciel E.
        • Becker J.H.
        • Lima E.H.
        • Marcovaldi M.A.
        • Desalle R.
        Testing dispersal hypotheses in foraging green sea turtles (Chelonia mydas) of Brazil.
        J. Hered. 2007; 98: 29-39
        • Dethmers K.E.
        • Broderick D.
        • Moritz C.
        • Fitzsimmons N.N.
        • Limpus C.J.
        • Lavery S.
        • Whiting S.
        • Guinea M.
        • Prince R.I.
        • Kennett R.
        The genetic structure of Australasian green turtles (Chelonia mydas): exploring the geographical scale of genetic exchange.
        Mol. Ecol. 2006; 15: 3931-3946
        • Le M.
        • Raxworthy C.J.
        • McCord W.P.
        • Mertz L.
        A molecular phylogeny of tortoises (Testudines: Testudinidae) based on mitochondrial and nuclear genes.
        Mol. Phylogenet. Evol. 2006; 40: 517-531
        • Parham J.F.
        • Feldman C.R.
        • Boore J.L.
        The complete mitochondrial genome of the enigmatic bigheaded turtle (Platysternon): description of unusual genomic features and the reconciliation of phylogenetic hypotheses based on mitochondrial and nuclear DNA.
        BMC Evol. Biol. 2006; 6: 1-11
        • Parham J.F.
        • Macey J.R.
        • Papenfuss T.J.
        • Feldman C.R.
        • Turkozan O.
        • Polymeni R.
        • Boore J.
        The phylogeny of Mediterranean tortoises and their close relatives based on complete mitochondrial genome sequences from museum specimens.
        Mol. Phylogenet. Evol. 2006; 38: 50-64
        • Krenz J.G.
        • Naylor G.J.
        • Shaffer H.B.
        • Janzen F.J.
        Molecular phylogenetics and evolution of turtles.
        Mol. Phylogenet. Evol. 2005; 37: 178-191
        • Parham J.F.
        • Stuart B.L.
        • Bour R.
        • Fritz U.
        Evolutionary distinctiveness of the extinct Yunnan box turtle (Cuora yunnanensis) revealed by DNA from an old museum specimen.
        Proc. Biol. Sci. 2004; 271: S391-394
        • Chassin-Noria O.
        • Abreu-Grobois A.
        • Dutton P.H.
        • Oyama K.
        Conservation genetics of the east Pacific green turtle (Chelonia mydas) in Michoacan.
        Mexico Genet. 2004; 121: 195-206
        • Fujita M.K.
        • Engstrom T.N.
        • Starkey D.E.
        • Shaffer H.B.
        Turtle phylogeny: insights from a novel nuclear intron.
        Mol. Phylogenet. Evol. 2004; 31: 1031-1040
        • Stuart B.L.
        • Parham J.F.
        Molecular phylogeny of the critically endangered Indochinese box turtle (Cuora galbinifrons).
        Mol. Phylogenet. Evol. 2004; 31: 164-177
        • Naro-Maciel E.
        • Becker J.H.
        • Lima E.H.
        • Marcovaldi M.A.
        • DeSalle R.
        Testing dispersal hypotheses in foraging green sea turtles (Chelonia mydas) of Brazil.
        J. Hered. 2007; 98: 29-39
        • Peare T.
        • Parker P.G.
        Local genetic structure within two rookeries of Chelonia mydas (the green turtle).
        Heredity. 1996; 77: 619-628
        • Valenzuela N.
        Multiple paternity in side-neck turtles Podocnemis expansa: evidence from microsatellite DNA data.
        Mol. Ecol. 2000; 9: 99-105
        • Chassin-Noria O.
        • Abreu-Grobois A.
        • Dutton P.H.
        • Oyama K.
        Conservation genetics of the east Pacific green turtle (Chelonia mydas) in Michoacan, Mexico.
        Genetica. 2004; 121: 195-206
        • Roberts M.A.
        • Schwartz T.S.
        • Karl S.A.
        Global population genetic structure and male-mediated gene flow in the green sea turtle (Chelonia mydas): analysis of microsatellite loci.
        Genetics. 2004; 166: 1857-1870
        • Irwin D.M.
        • Kocher T.D.
        • Wilson A.C.
        Evolution of the cytochrome b gene of mammals.
        J. Mol. Evol. 1991; 32: 128-144
        • Anderson S.
        • Bankier A.T.
        • Barrel B.G.
        • de Bruijn M.H.L.
        • Coulson A.R.
        • Drouin J.
        • Eperon I.C.
        • Nierlich D.P.
        • Roe B.A.
        • Sanger F.
        • Schreier P.H.
        • Smith A.J.H.
        • Staden R.
        • Young I.G.
        Sequence and organization of the human mitochondrial genome.
        Nature. 1981; 290: 457-465
        • Hsieh H.M.
        • Chiang H.L.
        • Tsai L.C.
        • Lai S.Y.
        • Huang N.E.
        • Linacre A.
        • Lee J.C.I.
        Cytochrome b gene for species identification of the conservation animals.
        Forensic Sci. Int. 2001; 122: 7-18
        • Su B.
        • Wang Y.X.
        • Lan H.
        • Wang W.
        • Zhang Y.
        Phylogenetic study of complete cytochrome b genes in musk deer (Genus Moschus) using museum samples.
        Mol. Phylogenetic. Evol. 1999; 12: 241-249