Advertisement
Research Article| Volume 3, ISSUE 2, P74-79, March 2009

Novel methods of molecular sex identification from skeletal tissue using the amelogenin gene

  • Victoria Gibbon
    Correspondence
    Corresponding author at: School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, 7 York Rd, Johannesburg, 2193 Parktown, South Africa. Tel.: +27 11 488 3632.
    Affiliations
    Department of Internal Medicine, University of the Witwatersrand, 7 York Rd, Johannesburg, 2193 Parktown, South Africa

    School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, 7 York Rd, Johannesburg, 2193 Parktown, South Africa
    Search for articles by this author
  • Maria Paximadis
    Affiliations
    AIDS Virus Research Unit, National Institute of Communicable Diseases, Sandringham, Johannesburg, South Africa
    Search for articles by this author
  • Goran Štrkalj
    Affiliations
    Department of Health and Chiropractic, Macquarie University, Sydney, NSW 2109, Australia
    Search for articles by this author
  • Paul Ruff
    Affiliations
    Department of Internal Medicine, University of the Witwatersrand, 7 York Rd, Johannesburg, 2193 Parktown, South Africa
    Search for articles by this author
  • Clem Penny
    Affiliations
    Department of Internal Medicine, University of the Witwatersrand, 7 York Rd, Johannesburg, 2193 Parktown, South Africa
    Search for articles by this author
Published:December 15, 2008DOI:https://doi.org/10.1016/j.fsigen.2008.10.007

      Abstract

      Sex identification from skeletal material is of vital importance in order to reconstruct the demographic variables of an individual in forensic genetics and ancient DNA (aDNA) analysis. When the use of conventional methods of sex identification are impossible, molecular analysis of the X and Y chromosomes provides an expedient solution. Two novel systems of molecular sex identification suitable for skeletal material using the amelogenin gene are described, beginning in intron 2–3, spanning exon 3 and ending in intron 3–4. This area was optimal for sexing, as it includes 14 sex-specific polymorphic regions in addition to an indel (insertion or deletion of nucleotides). Once optimised and working with 100% efficiency on the controls, these procedures were applied to a collection of miscellaneous archaeological skeletons (ex situ) sourced from the Raymond Dart Collection of Human Skeletons (Dart Collection). This collection was used to optimise these techniques for skeletal remains derived from an archaeological context. These methods produced 46.66% sex results for the ex situ sample, which is within the normal range for aDNA studies. These new techniques are optimal for sex identification, with both the inherent control of isolating many sex-specific features and combined with the use of sensitive micro-fluidic electrophoresis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kaestle F.A.
        • Horsburgh K.A.
        Ancient DNA anthropology: methods, applications, and ethics.
        Yearb. Phys. Anthropol. 2002; 45: 92-130
        • France D.L.
        Observational and metric analysis of sex in the skeleton.
        in: Reichs K. Bass W. Forensic Osteology. Charles C. Thomas Publishing, Illinois1998: 163-186
        • Faerman M.
        • Filon D.
        • Kahila G.
        • Greenblatt C.L.
        • Smith P.
        • Oppenheim A.
        Sex identification of archaeological human remains based on amplification of the X and Y amelogenin alleles.
        Gene. 1995; 167: 327-332
        • Woodward V.E.
        • Penny C.B.
        • Ruff P.
        • Štrkalj G.
        Intercondylar fossa of the femur: a novel region for DNA extraction.
        S. Afr. Archaeol. Bull. 2006; 61: 96-97
        • O’Rourke D.H.
        • Hayes M.G.
        • Carlyle S.W.
        Ancient DNA studies in physical anthropology.
        Ann. Rev. Anthropol. 2000; 29: 217-242
        • Hagelberg E.
        • Clegg J.B.
        Isolation and characterization of DNA from archaeological bone.
        Proc. Biol. Sci. 1991; 244: 45-50
        • Höss M.
        • Pääbo S.
        DNA extraction from pleistocene bones by a silica-based purification method.
        Nucleic Acids Res. 1993; 21: 3913-3914
        • Yang D.Y.
        • Eng B.
        • Waye J.S.
        • Dudar J.C.
        • Saunders S.R.
        Technical note: improved DNA extraction from ancient bones using silica-based spin columns.
        Am. J. Phys. Anthropol. 1998; 105: 539-543
        • Kolman C.J.
        • Tuross N.
        Ancient DNA analysis of human populations.
        Am. J. Phys. Anthropol. 2000; 111: 5-23
        • Zoledziewska M.
        • Gronkiewicz S.
        • Dobosz T.
        Comparison of various decalificators in preparation of DNA from human rib bones.
        Anthropol. Rev. 2002; 65: 75-80
        • Fletcher H.A.
        • Donoghue H.D.
        • Holton J.
        • Pap I.
        • Spigelman M.
        Widespread occurrence of Mycobacterium tuberculosis DNA from 18th–19th century Hungarians.
        Am. J. Phys. Anthropol. 2003; 120: 144-152
        • Holland M.M.
        • Cave C.A.
        • Holland C.A.
        • Bille T.W.
        Development of a quality, high throughput DNA analysis procedure for skeletal samples to assist with the identification of victims from the World Trade Center attacks.
        Croat. Med. J. 2003; 44: 264-272
        • Bille T.
        • Wingrove R.
        • Holland M.
        • Cave C.
        • Schumm J.
        Novel method of DNA extraction from bones assisted DNA identification of world trade center victims.
        Int. Congr. Ser. 2004; 1261: 553-555
        • Cattaneo C.
        • Craig O.E.
        • James N.T.
        • Sokol R.J.
        Comparison of three DNA extraction methods on bone and blood stains up to 43 years old and amplification of three different gene sequences.
        J. Archaeol. Sci. 1997; 42: 1126-1135
        • Faerman M.
        • Bar-Gal G.K.
        Determining the sex of infanticide victims from the late Roman era through ancient DNA analysis.
        J. Archaeol. Sci. 1998; 25: 861-865
        • Cipollaro M.
        • Bernardo G.D.
        • Galano G.
        • Galderisi U.
        • Guarino F.
        • Angelini F.
        • Cascino A.
        Ancient DNA in human bone remains from Pompeii archaeological site.
        Biochem. Biophys. Res. Commun. 1998; 247: 901-904
        • Meyer E.
        • Wiese M.
        • Bruchhaus H.
        • Claussen M.
        • Klein A.
        Extraction and amplification of authentic DNA from ancient human remains.
        Forensic Sci. Int. 2000; 113: 87-90
        • Sivagami A.V.
        • Rajeswara Rao A.
        • Varshney U.
        A simple and cost-effective method for preparing DNA from the hard tooth tissue, and its use in polymerase chain reaction amplification of amelogenin gene segment for sex identification in an Indian population.
        Forensic Sci. Int. 2000; 110: 107-115
        • Matheson C.D.
        • Loy T.H.
        Genetic sex identification of 9400-year-old human skull samples from Ćayönü, Turkey.
        J. Archaeol. Sci. 2001; 28: 569-575
        • Alonso A.
        • Martín P.
        • Albarrán C.
        • García P.
        • García O.
        • de Simón L.F.
        • García-Hirschfeld J.
        • Sancho M.
        • de la Rúa C.
        • Fernández-Piqueras J.
        Real-time PCR designs to estimate nuclear DNA and mitochondrial DNA copy number in forensic and ancient DNA studies.
        Forensic Sci. Int. 2004; 139: 141-149
        • Fredsted T.
        • Villesen P.
        Fast and reliable sexing of prosimian and human DNA.
        Am. J. Primatol. 2004; 64: 345-350
        • Arnay-de-le-Rosa M.
        • Ginzález-Reimers E.
        • Fregel R.
        • Velasco-Vázquez J.
        • Delgado-Darias T.
        • González A.M.
        • Larruga J.M.
        Canary islands aborigin sex identification based on mandible parameters contrasted by amelogenin analysis.
        J. Archaeol. Sci. 2007; 34: 1515-1522
        • Haas-Rochholz H.
        • Weiler G.
        Additional primer sets for an amelogenin gene PCR-based DNA-sex test.
        Int. J. Leg. Med. 1997; 110: 312-315
        • Chen E.
        • Yuan Z.A.
        • Collier P.M.
        • Greene S.R.
        • Abrams W.R.
        • Gibson C.W.
        Comparison of upstream regions of X-and Y-chromosomal amelogenin genes.
        Gene. 1998; 216: 131-137
        • Buel E.
        • Wang G.
        • Schwartz M.
        PCR amplification of animal DNA with human X–Y amelogenin primers used in gender identification.
        J. Archaeol. Sci. 1995; 40: 641-644
      1. Ensembl Genome Browser n.d. ‘Wellcome Trust Sanger Institute and EB-Eye Search’http://www.ensembl.org/index.html.

        • Cooper A.
        • Poinar H.
        Ancient DNA: do it right or not at all.
        Science. 2000; 289: 1139-1142
        • Schmidt T.
        • Hummel S.
        • Herrman B.
        Evidence of contamination in PCR laboratory disposables.
        Naturwissenschaften. 1995; 82: 423-431
        • Kemp B.M.
        • Smith D.G.
        Use of bleach to eliminate contaminating DNA from the surface of bones and teeth.
        Forensic Sci. Int. 2005; 154: 53-61
        • Miller S.A.
        • Dykes D.D.
        • Polesky H.F.
        A simple salting procedure for extracting DNA from human nucleated cells.
        Nucleic Acids Res. 1988; 16: 12
        • Pääbo S.
        • Poinar H.
        • Serre D.
        • Jaenicke-Després V.
        • Hebler J.
        • Rohland N.
        • Kuch M.
        • Krause J.
        • Vigilant L.
        • Hofreiter M.
        Genetic analysis from ancient DNA.
        Annu. Rev. Genet. 2004; 38: 645-679
        • Mannucci A.
        • Sullivan K.M.
        • Ivanov P.L.
        • Gill P.
        Forensic application of a rapid and quantitative DNA sex test by amplification of the X–Y homologous gene amelogenin.
        J. Leg. Med. 1994; 106: 190-193
        • Zoledziewska M.
        • Jonkisz A.
        • Lebioda A.
        • Bartnik B.
        • Kowalczyk E.
        • Dmochowska G.
        • Swiatek B.
        • Dubosz T.
        Three points of detection of short fragments derived from the amelogenin gene for gender identification-new possibilities for the capillary electrophoresis system.
        Int. Congr. Ser. 2004; 1261: 619-621