Research Article| Volume 3, ISSUE 3, P185-192, June 2009

DNA from processed and unprocessed wood: Factors influencing the isolation success

Published:February 05, 2009DOI:


      Molecular genetic markers have numerous potential applications in environmental forensics if DNA can be isolated from ‘difficult’ non-human biological material such as hairs, feathers, or wood. The identification of the origin of wood is particularly important in order to identify illegally harvested and traded timber and wood products. We describe success rates of DNA isolation from wood based on a simple, previously published extraction protocol. The protocol was used to isolate DNA from a total of 406 wood samples, mainly of the important tropical tree family Dipterocarpaceae. The reliability of the extraction method was confirmed by comparing fragment sizes and sequences after isolation of DNA from leaves and wood of the same trees. We observed the success of amplification of chloroplast DNA (cpDNA) fragments of different lengths by means of PCR, investigated key factors influencing PCR, and conducted inhibitor tests for a subset of the samples. The average rate of successful PCR amplification was 75.7%. Main factors influencing the success of PCR amplification were the size of the amplified fragment and the processing status of the wood. Short fragments and unprocessed wood resulted in higher success rates. The success rate was also dependent on the age (storage duration) of the wood probe and on the investigated species. Amplification success was higher if DNA was isolated from outer sapwood (without cambium) in comparison to DNA isolated from the transition zone between sapwood and heartwood and the inner heartwood. However, inhibitor tests also indicated more PCR inhibitory substances in the outer sapwood in comparison to transition wood and heartwood. The addition of polyvinylpyrolidone (PVP) to the lysis buffer proved to be highly efficient to improve the amplification success if inhibitory substances were present.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Hummel S.
        Ancient DNA Typing: Methods, Strategies and Applications.
        Springer, Heidelberg2003
        • Finkeldey R.
        • Gailing O.
        • Hattemer H.H.
        • Vornam B.
        Molekulare Analyse von Pflanzenteilen in der Forensik.
        in: Herrmann B. Saternus K. Biologische Spurenkunde, Band 1 Kriminalbiologie. Springer, Berlin/Heidelberg2007: 343-362
        • Piggott M.P.
        • Taylor A.C.
        Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species.
        Wildl. Res. 2003; 30: 1-13
      1. Programme for the Endorsement of Forest Certification Schemes, PEFC,

      2. The Forestry Stewardship Council, FSC,

        • Kelly S.
        • Heaton K.
        • Hoogewerff J.
        Tracing the geographical origin of food: the application of multi-element and multi-isotope analysis.
        Trends Food Sci. Technol. 2005; 16: 555-567
        • Martin G.J.
        • Guillou C.
        • Martin M.L.
        • Cabanis M.
        • Tep Y.
        • Aerny J.
        Natural factors of isotope fractionation and the characterization of wines.
        J. Agric. Food Chem. 1988; 36: 316-322
      3. A. Kagawa, K. Kuroda, H. Abe, T. Fujii, Y. Itoh, Stable isotopes and inorganic elements as potential indicators of geographic origin of Southeast Asian timber, in: T. Fujii (Chairman), Proceedings of the International Symposium on Development of Improved Methods to Identify Shorea Species Wood and its Origin, Forestry and Forest Products Research (2007), pp. 39–44.

      4. H. Förstel, M. Boner, T. Sommer, C. Erven, J. Zahnen, N. Grießhammer, A. Sonnenberg. Nutzung der natürlichen Variation stabiler Isotope im Holz als Fingerabdruck zur Überprüfung der Herkunftsdeklaration. Forst und Holz 63/3 (2008) 31–34.

        • Petit R.
        • Csaikl U.
        • Bordács S.
        • Burg K.
        • Coart E.
        • Cottrell J.
        • van Dam B.
        • Deans D.
        • Dumolin-Lapègue S.
        • Fineschi S.
        • Finkeldey R.
        • Gillies A.
        • Glaz I.
        • Goicoechea P.G.
        • Jensen J.S.
        • König A.O.
        • Lowe A.J.
        • Madsen S.F.
        • Mátyás G.
        • Munro R.C.
        • Olalde M.
        • Pemonge M.H.
        • Popescu F.
        • Slade D.
        • Tabbener H.
        • Taurchini D.
        • de Vries S.G.M.
        • Ziegenhagen B.
        • Kremer A.
        Chloroplast DNA variation in European white oaks. Phylogeography and patterns of diversity based on data from over 2600 populations.
        Forest Ecol. Manage. 2002; 156: 5-26
        • Cannon C.H.
        • Manos P.S.
        Phylogeography of the Southeast Asian stone oaks (Lithocarpus).
        J. Biogeogr. 2003; 30: 211-226
        • Cao C.P.
        • Finkeldey R.
        • Siregar I.
        • Siregar U.
        • Gailing O.
        Genetic diversity within and among populations of Shorea leprosula Miq. and Shorea parvifolia Dyer (Dipterocarpaceae) in Indonesia detected by AFLPs.
        Tree Genet. Genomes. 2006; 2: 225-239
        • Weising K.
        • Nybom H.
        • Wolff K.
        • Kahl G.
        DNA Fingerprinting in Plants. Principles, Methods, and Applications.
        2nd ed. CRC Press, Boca Raton2005
        • Deguilloux M.F.
        • Pemonge M.H.
        • Petit R.J.
        Novel perspectives in wood certification and forensics: dry wood as a source of DNA.
        Proc. Roy. Soc. Lond. Ser. B. 2002; 269: 1039-1046
        • Finkeldey R.
        • Rachmayanti Y.
        • Gailing O.
        Molecular genetic tools for the identification of the origin of wood.
        in: Kües U. Wood Production, Wood Technology and Biotechnological Impacts. Universitätsverlag Göttingen, Göttingen2007: 143-158
        • Rachmayanti Y.
        • Leinemann L.
        • Gailing O.
        • Finkeldey R.
        Extraction, amplification and characterization of wood DNA from Dipterocarpaceae.
        Plant Mol. Biol. Rep. 2006; 24: 45-55
        • Lee A.B.
        • Cooper T.A.
        Improved direct PCR screen for bacterial colonies: wooden toothpicks inhibit PCR amplification.
        Biotechniques. 1995; 18: 225-226
        • Lindhal T.
        Instability and decay of the primary structure of DNA.
        Nature. 1993; 362: 709-715
        • Bär W.
        • Kratzer A.
        • Mächler M.
        • Schmid W.
        Postmortem instability of DNA.
        Forensic Sci. Int. 1988; 39: 59-70
        • Dumolin-Lapègue S.
        • Pemonge M.H.
        • Gielly L.
        • Taberlet P.
        • Petit R.J.
        Amplification of oak DNA from ancient and modern wood.
        Mol. Ecol. 1999; 8: 2137-2140
        • De Filippis L.
        • Magel E.
        Differences in genomic DNA extracted from bark and from wood of different zones in Robinia trees using RAPD-PCR.
        Trees. 1998; 12: 377-384
        • Asif M.J.
        • Cannon C.H.
        DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus).
        Plant Mol. Biol. Rep. 2005; 23: 185-192
        • Weising K.
        • Gardner R.C.
        A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms.
        Genome. 1999; 42: 9-19
        • Taberlet P.
        • Gielly L.
        • Pautou G.
        • Bouvet J.
        Universal primers for amplification of three non-coding regions of chloroplast DNA.
        Plant Mol. Biol. 1991; 17: 1105-1109
        • Soranzo N.
        • Provan J.
        • Powell W.
        Characterization of microsatellite loci in Pinus sylvestris L..
        Mol. Ecol. 1998; 7: 1260-1261
        • Besnard G.
        • Acheré V.
        • Faivre Rampant P.
        • Favre M.
        • Jeandroz S.
        A set of cross-species amplifying microsatellite markers developed from DNA sequence databanks in Picea (Pinaceae).
        Mol. Ecol. Notes. 2003; 3: 380-383
        • Sambrook J.
        • Fritsch E.F.
        • Maniatis T.
        Molecular Cloning: A Laboratory Manual.
        2nd ed. Cold Spring Harbor Laboratory Press, Plainview, New York1989
      5. Eppendorf North America, Applications, BioPhotometer: Quantification made easy,

        • Yeates C.
        • Gillings M.R.
        • Davison A.D.
        • Altavilla N.
        • Vea D.A.
        Methods for microbial DNA extraction from soil for PCR amplification.
        Biol. Proced. Online. 1998; 1