Advertisement
Research Article| Volume 3, ISSUE 3, P154-161, June 2009

DNA-based prediction of human externally visible characteristics in forensics: Motivations, scientific challenges, and ethical considerations

Published:February 26, 2009DOI:https://doi.org/10.1016/j.fsigen.2009.01.012

      Abstract

      There will always be criminal cases, where the evidence DNA sample will not match either a suspect's DNA profile, or any in a criminal DNA database. In the absence of DNA-based mass intelligence screenings, including familial searching (both of which may be restricted by legislation), there is only one option to potentially avoid or retrospectively solve “cold cases”: the DNA-based prediction of human externally visible characteristics of an unknown person based on the crime scene sample left behind. Predictive DNA markers are expected to be available for some group-specific appearance traits in the near future; although it is unlikely that we will soon be able to understand the biological complexity of individual-specific appearance. In suspect-less cases reliable DNA-based prediction of broader externally visible characteristics from crime scene samples are expected to reduce the potential pool of suspects by allowing police investigations to concentrate on specific groups of people. Here, we aim to describe the forensic motivations for DNA-based prediction of human externally visible traits as well as the scientific challenges of finding predictive DNA markers, and will discuss examples with promising (e.g. sex, eye color and hair color), as well as less promising expectations (e.g. adult body height), in the foreseen future. Despite the complex ethical and legal implications arising from DNA-based prediction of externally visible characteristics, we argue that their use does not lead to a violation of privacy. We suggest that likelihood-based results, rather than DNA data itself, should be provided to the police for investigative purposes avoiding data protection issues. Furthermore, we note that the risk of exacerbating social pressure on minority groups due to DNA-based prediction of externally visible traits in crime cases may be reduced rather than increased compared to a conventional eyewitness testimony. A firm legal basis will need to be established for the application of these promising qualitative techniques. To gain the attention of legislative bodies, we invite the forensic community to participate in a public discourse of these issues.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Prinz M.
        • Carracedo A.
        • Mayr W.R.
        • Morling N.
        • Parsons T.J.
        • Sajantila A.
        • Scheithauer R.
        • Schmitter H.
        • Schneider P.M.
        DNA Commission of the International Society for Forensic Genetics (ISFG): Recommendations regarding the role of forensic genetics for disaster victim identification (DVI).
        Forensic Sci. Int. Genet. 2007; 1: 3-12
        • Werrett D.J.
        The national DNA database.
        Forensic Sci. Int. 1997; 88: 33-42
        • Cho M.K.
        • Sankar P.
        Forensic genetics and ethical, legal and social implications beyond the clinic.
        Nat. Genet. 2004; 36: S8-S12
        • Bieber F.R.
        • Brenner C.H.
        • Lazer D.
        Human genetics. Finding criminals through DNA of their relatives.
        Science. 2006; 312: 1315-1316
        • Kayser M.
        • Vermeulen M.
        • Knoblauch H.
        • Schuster H.
        • Krawczak M.
        • Roewer L.
        Relating two deep-rooted pedigrees from Central Germany by high-resolution Y-STR haplotyping.
        Forensic Sci. Int. Genet. 2007; 1: 125-128
        • Dettlaff-Kakol A.
        • Pawlowski R.
        First Polish DNA “manhunt” – an application of Y-chromosome STRs.
        Int. J. Legal. Med. 2002; 116: 289-291
        • Pulker H.
        • Lareu M.V.
        • Phillips C.
        • Carracedo A.
        Finding genes that underlie physical traits of forensic interest using genetic tools.
        Forensic Sci. Int. Genet. 2007; 1: 100-104
        • Wellcome Trust Case Control Consortium
        Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.
        Nature. 2007; 447: 661-678
        • Langefeld C.D.
        • Fingerlin T.E.
        Association methods in human genetics.
        Methods Mol. Biol. 2007; 404: 431-460
        • Risch N.
        • Merikangas K.
        The future of genetic studies of complex human diseases.
        Science. 1996; 273: 1516-1517
        • Valverde P.
        • Healy E.
        • Jackson I.
        • Rees J.L.
        • Thody A.J.
        Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans.
        Nat. Genet. 1995; 11: 328-330
        • Mannucci A.
        • Sullivan K.M.
        • Ivanov P.L.
        • Gill P.
        Forensic application of a rapid and quantitative DNA sex test by amplification of the X–Y homologous gene amelogenin.
        Int. J. Legal. Med. 1994; 106: 190-193
        • Steinlechner M.
        • Berger B.
        • Niederstatter H.
        • Parson W.
        Rare failures in the amelogenin sex test.
        Int. J. Legal. Med. 2002; 116: 117-120
        • Thangaraj K.
        • Reddy A.G.
        • Singh L.
        Is the amelogenin gene reliable for gender identification in forensic casework and prenatal diagnosis?.
        Int. J. Legal. Med. 2002; 116: 121-123
        • Santos F.R.
        • Pandya A.
        • Tyler-Smith C.
        Reliability of DNA-based sex tests.
        Nat. Genet. 1998; 18: 103
        • Brinkmann B.
        Is the amelogenin sex test valid?.
        Int. J. Legal. Med. 2002; 116: 63
        • Box N.F.
        • Wyeth J.R.
        • O’Gorman L.E.
        • Martin N.G.
        • Sturm R.A.
        Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair.
        Hum. Mol. Genet. 1997; 6: 1891-1897
        • Beaumont K.A.
        • Shekar S.N.
        • Cook A.L.
        • Duffy D.L.
        • Sturm R.A.
        Red hair is the null phenotype of MC1R.
        Hum. Mutat. 2008; 29: E88-E94
        • Raimondi S.
        • Sera F.
        • Gandini S.
        • Iodice S.
        • Caini S.
        • Maisonneuve P.
        • Fargnoli M.C.
        MC1R variants, melanoma and red hair color phenotype: a meta-analysis.
        Int. J. Cancer. 2008; 122: 2753-2760
        • Sulem P.
        • Gudbjartsson D.F.
        • Stacey S.N.
        • Helgason A.
        • Rafnar T.
        • Magnusson K.P.
        • Manolescu A.
        • Karason A.
        • Palsson A.
        • Thorleifsson G.
        • Jakobsdottir M.
        • Steinberg S.
        • Palsson S.
        • Jonasson F.
        • Sigurgeirsson B.
        • Thorisdottir K.
        • Ragnarsson R.
        • Benediktsdottir K.R.
        • Aben K.K.
        • Kiemeney L.A.
        • Olafsson J.H.
        • Gulcher J.
        • Kong A.
        • Thorsteinsdottir U.
        • Stefansson K.
        Genetic determinants of hair, eye and skin pigmentation in Europeans.
        Nat. Genet. 2007; 39: 1443-1452
        • Han J.
        • Kraft P.
        • Nan H.
        • Guo Q.
        • Chen C.
        • Qureshi A.
        • Hankinson S.E.
        • Hu F.B.
        • Duffy D.L.
        • Zhao Z.Z.
        • Martin N.G.
        • Montgomery G.W.
        • Hayward N.K.
        • Thomas G.
        • Hoover R.N.
        • Chanock S.
        • Hunter D.J.
        A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation.
        PLoS Genet. 2008; 4: e1000074
        • Flanagan N.
        • Healy E.
        • Ray A.
        • Philips S.
        • Todd C.
        • Jackson I.J.
        • Birch-Machin M.A.
        • Rees J.L.
        Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation.
        Hum. Mol. Genet. 2000; 9: 2531-2537
        • Grimes E.A.
        • Noake P.J.
        • Dixon L.
        • Urquhart A.
        Sequence polymorphism in the human melanocortin 1 receptor gene as an indicator of the red hair phenotype.
        Forensic Sci. Int. 2001; 122: 124-129
        • Branicki W.
        • Brudnik U.
        • Kupiec T.
        • Wolanska-Nowak P.
        • Wojas-Pelc A.
        Determination of phenotype associated SNPs in the MC1R gene.
        J. Forensic Sci. 2007; 52: 349-354
        • Tully G.
        Genotype versus phenotype: human pigmentation.
        Forensic Sci. Int. Genet. 2007; 1: 105-110
        • Sulem P.
        • Gudbjartsson D.F.
        • Stacey S.N.
        • Helgason A.
        • Rafnar T.
        • Jakobsdottir M.
        • Steinberg S.
        • Gudjonsson S.A.
        • Palsson A.
        • Thorleifsson G.
        • Palsson S.
        • Sigurgeirsson B.
        • Thorisdottir K.
        • Ragnarsson R.
        • Benediktsdottir K.R.
        • Aben K.K.
        • Vermeulen S.H.
        • Goldstein A.M.
        • Tucker M.A.
        • Kiemeney L.A.
        • Olafsson J.H.
        • Gulcher J.
        • Kong A.
        • Thorsteinsdottir U.
        • Stefansson K.
        Two newly identified genetic determinants of pigmentation in Europeans.
        Nat. Genet. 2008; 40: 835-837
        • Rebbeck T.R.
        • Kanetsky P.A.
        • Walker A.H.
        • Holmes R.
        • Halpern A.C.
        • Schuchter L.M.
        • Elder D.E.
        • Guerry D.
        P gene as an inherited biomarker of human eye color.
        Cancer Epidemiol. Biomarkers Prev. 2002; 11: 782-784
        • Frudakis T.
        • Thomas M.
        • Gaskin Z.
        • Venkateswarlu K.
        • Chandra K.S.
        • Ginjupalli S.
        • Gunturi S.
        • Natrajan S.
        • Ponnuswamy V.K.
        • Ponnuswamy K.N.
        Sequences associated with human iris pigmentation.
        Genetics. 2003; 165: 2071-2083
        • Frudakis T.
        • Terravainen T.
        • Thomas M.
        Multilocus OCA2 genotypes specify human iris colors.
        Hum. Genet. 2007; 122: 311-326
        • Duffy D.L.
        • Montgomery G.W.
        • Chen W.
        • Zhao Z.Z.
        • Le L.
        • James M.R.
        • Hayward N.K.
        • Martin N.G.
        • Sturm R.A.
        A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation.
        Am. J. Hum. Genet. 2007; 80: 241-252
        • Kayser M.
        • Liu F.
        • Janssens A.C.
        • Rivadeneira F.
        • Lao O.
        • van Duijn K.
        • Vermeulen M.
        • Arp P.
        • Jhamai M.M.
        • van Ijcken W.F.
        • den Dunnen J.T.
        • Heath S.
        • Zelenika D.
        • Despriet D.D.
        • Klaver C.C.
        • Vingerling J.R.
        • de Jong P.T.
        • Hofman A.
        • Aulchenko Y.S.
        • Uitterlinden A.G.
        • Oostra B.A.
        • van Duijn C.M.
        Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene.
        Am. J. Hum. Genet. 2008; 82: 411-423
        • Eiberg H.
        • Troelsen J.
        • Nielsen M.
        • Mikkelsen A.
        • Mengel-From J.
        • Kjaer K.W.
        • Hansen L.
        Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression.
        Hum. Genet. 2008; 123: 177-187
        • Sturm R.A.
        • Duffy D.L.
        • Zhao Z.Z.
        • Leite F.P.
        • Stark M.S.
        • Hayward N.K.
        • Martin N.G.
        • Montgomery G.W.
        A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color.
        Am. J. Hum. Genet. 2008; 82: 424-431
      1. http://www.dnaprint.com/welcome/press/press_recent/2004/august_17/.

      2. F. Liu, K. van Duijn, J.R. Vingerling, A. Hofman, A.G. Uitterlinden, A.C.J.W. Janssens, M. Kayser, Eye color and the prediction of complex phenotypes from genotypes, Curr. Biol., in press.

        • Frost P.
        European hair and eye color. A case of frequency-dependent sexual selection?.
        Evol. Hum. Behav. 2006; 27: 85-103
        • Li J.Z.
        • Absher D.M.
        • Tang H.
        • Southwick A.M.
        • Casto A.M.
        • Ramachandran S.
        • Cann H.M.
        • Barsh G.S.
        • Feldman M.
        • Cavalli-Sforza L.L.
        • Myers R.M.
        Worldwide human relationships inferred from genome-wide patterns of variation.
        Science. 2008; 319: 1100-1104
        • Jakobsson M.
        • Scholz S.W.
        • Scheet P.
        • Gibbs J.R.
        • VanLiere J.M.
        • Fung H.C.
        • Szpiech Z.A.
        • Degnan J.H.
        • Wang K.
        • Guerreiro R.
        • Bras J.M.
        • Schymick J.C.
        • Hernandez D.G.
        • Traynor B.J.
        • Simon-Sanchez J.
        • Matarin M.
        • Britton A.
        • van de Leemput J.
        • Rafferty I.
        • Bucan M.
        • Cann H.M.
        • Hardy J.A.
        • Rosenberg N.A.
        • Singleton A.B.
        Genotype, haplotype and copy-number variation in worldwide human populations.
        Nature. 2008; 451: 998-1003
        • Lao O.
        • van Duijn K.
        • Kersbergen P.
        • de Knijff P.
        • Kayser M.
        Proportioning wholegenome single-nucleotide-polymorphism diversity for the identification of geographic population structure and genetic ancestry.
        Am. J. Hum. Genet. 2006; 78: 680-690
        • Phillips C.
        • Salas A.
        • Sanchez J.J.
        • Fondevila M.
        • Gomez-Tato A.
        • Alvarez-Dios J.
        • Calaza M.
        • Casares de Cal M.
        • Ballard D.
        • Lareu M.V.
        • Carracedo A.
        • Consortium T.S.
        Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs.
        Forensic Sci. Int. Genet. 2007; 1: 273-280
        • Graf J.
        • Voisey J.
        • Hughes I.
        • van Daal A.
        Promoter polymorphisms in the MATP (SLC45A2) gene are associated with normal human skin color variation.
        Hum. Mutat. 2007; 28: 710-717
        • Kanetsky P.A.
        • Swoyer J.
        • Panossian S.
        • Holmes R.
        • Guerry D.
        • Rebbeck T.R.
        A polymorphism in the agouti signaling protein gene is associated with human pigmentation.
        Am. J. Hum. Genet. 2002; 70: 770-775
        • Bonilla C.
        • Boxill L.A.
        • Donald S.A.
        • Williams T.
        • Sylvester N.
        • Parra E.J.
        • Dios S.
        • Norton H.L.
        • Shriver M.D.
        • Kittles R.A.
        The 8818G allele of the agouti signaling protein (ASIP) gene is ancestral and is associated with darker skin color in African Americans.
        Hum. Genet. 2005; 116: 402-406
        • Stokowski R.P.
        • Pant P.V.
        • Dadd T.
        • Fereday A.
        • Hinds D.A.
        • Jarman C.
        • Filsell W.
        • Ginger R.S.
        • Green M.R.
        • van der Ouderaa F.J.
        • Cox D.R.
        A genomewide association study of skin pigmentation in a South Asian population.
        Am. J. Hum. Genet. 2007; 81: 1119-1132
        • Lao O.
        • de Gruijter J.M.
        • van Duijn K.
        • Navarro A.
        • Kayser M.
        Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms.
        Ann. Hum. Genet. 2007; 71: 354-369
        • McEvoy B.
        • Beleza S.
        • Shriver M.D.
        The genetic architecture of normal variation in human pigmentation: an evolutionary perspective and model.
        Hum. Mol. Genet. 2006; 15: R176-181
        • Jablonsky N.G.
        The evolution of human skin and skin color.
        Ann. Rev. Anthropol. 2004; 33: 585-623
        • Lamason R.L.
        • Mohideen M.A.
        • Mest J.R.
        • Wong A.C.
        • Norton H.L.
        • Aros M.C.
        • Jurynec M.J.
        • Mao X.
        • Humphreville V.R.
        • Humbert J.E.
        • Sinha S.
        • Moore J.L.
        • Jagadeeswaran P.
        • Zhao W.
        • Ning G.
        • Makalowska I.
        • McKeigue P.M.
        • O’Donnell D.
        • Kittles R.
        • Parra E.J.
        • Mangini N.J.
        • Grunwald D.J.
        • Shriver M.D.
        • Canfield V.A.
        • Cheng K.C.
        SLC24A5 a putative cation exchanger affects pigmentation in zebrafish and humans.
        Science. 2005; 310: 1782-1786
        • Visscher P.M.
        • Hill W.G.
        • Wray N.R.
        Heritability in the genomics era – concepts and misconceptions.
        Nat. Rev. Genet. 2008; 9: 255-266
        • Visscher P.M.
        Sizing up human height variation.
        Nat. Genet. 2008; 40: 489-490
        • Weedon M.N.
        • Lango H.
        • Lindgren C.M.
        • Wallace C.
        • Evans D.M.
        • Mangino M.
        • Freathy R.M.
        • Perry J.R.
        • Stevens S.
        • Hall A.S.
        • Samani N.J.
        • Shields B.
        • Prokopenko I.
        • Farrall M.
        • Dominiczak A.
        • Johnson T.
        • Bergmann S.
        • Beckmann J.S.
        • Vollenweider P.
        • Waterworth D.M.
        • Mooser V.
        • Palmer C.N.
        • Morris A.D.
        • Ouwehand W.H.
        • Zhao J.H.
        • Li S.
        • Loos R.J.
        • Barroso I.
        • Deloukas P.
        • Sandhu M.S.
        • Wheeler E.
        • Soranzo N.
        • Inouye M.
        • Wareham N.J.
        • Caulfield M.
        • Munroe P.B.
        • Hattersley A.T.
        • McCarthy M.I.
        • Frayling T.M.
        Genome-wide association analysis identifies 20 loci that influence adult height.
        Nat. Genet. 2008; 40: 575-583
        • Lettre G.
        • Jackson A.U.
        • Gieger C.
        • Schumacher F.R.
        • Berndt S.I.
        • Sanna S.
        • Eyheramendy S.
        • Voight B.F.
        • Butler J.L.
        • Guiducci C.
        • Illig T.
        • Hackett R.
        • Heid I.M.
        • Jacobs K.B.
        • Lyssenko V.
        • Uda M.
        • Boehnke M.
        • Chanock S.J.
        • Groop L.C.
        • Hu F.B.
        • Isomaa B.
        • Kraft P.
        • Peltonen L.
        • Salomaa V.
        • Schlessinger D.
        • Hunter D.J.
        • Hayes R.B.
        • Abecasis G.R.
        • Wichmann H.E.
        • Mohlke K.L.
        • Hirschhorn J.N.
        Identification of ten loci associated with height highlights new biological pathways in human growth.
        Nat. Genet. 2008; 40: 584-591
        • Gudbjartsson D.F.
        • Walters G.B.
        • Thorleifsson G.
        • Stefansson H.
        • Halldorsson B.V.
        • Zusmanovich P.
        • Sulem P.
        • Thorlacius S.
        • Gylfason A.
        • Steinberg S.
        • Helgadottir A.
        • Ingason A.
        • Steinthorsdottir V.
        • Olafsdottir E.J.
        • Olafsdottir G.H.
        • Jonsson T.
        • Borch-Johnsen K.
        • Hansen T.
        • Andersen G.
        • Jorgensen T.
        • Pedersen O.
        • Aben K.K.
        • Witjes J.A.
        • Swinkels D.W.
        • den Heijer M.
        • Franke B.
        • Verbeek A.L.
        • Becker D.M.
        • Yanek L.R.
        • Becker L.C.
        • Tryggvadottir L.
        • Rafnar T.
        • Gulcher J.
        • Kiemeney L.A.
        • Kong A.
        • Thorsteinsdottir U.
        • Stefansson K.
        Many sequence variants affecting diversity of adult human height.
        Nat. Genet. 2008; 40: 609-615
        • Weedon M.N.
        • Lettre G.
        • Freathy R.M.
        • Lindgren C.M.
        • Voight B.F.
        • Perry J.R.
        • Elliott K.S.
        • Hackett R.
        • Guiducci C.
        • Shields B.
        • Zeggini E.
        • Lango H.
        • Lyssenko V.
        • Timpson N.J.
        • Burtt N.P.
        • Rayner N.W.
        • Saxena R.
        • Ardlie K.
        • Tobias J.H.
        • Ness A.R.
        • Ring S.M.
        • Palmer C.N.
        • Morris A.D.
        • Peltonen L.
        • Salomaa V.
        • Davey Smith G.
        • Groop L.C.
        • Hattersley A.T.
        • McCarthy M.I.
        • Hirschhorn J.N.
        • Frayling T.M.
        A common variant of HMGA2 is associated with adult and childhood height in the general population.
        Nat. Genet. 2007; 39: 1245-1250
        • Sanna S.
        • Jackson A.U.
        • Nagaraja R.
        • Willer C.J.
        • Chen W.M.
        • Bonnycastle L.L.
        • Shen H.
        • Timpson N.
        • Lettre G.
        • Usala G.
        • Chines P.S.
        • Stringham H.M.
        • Scott L.J.
        • Dei M.
        • Lai S.
        • Albai G.
        • Crisponi L.
        • Naitza S.
        • Doheny K.F.
        • Pugh E.W.
        • Ben-Shlomo Y.
        • Ebrahim S.
        • Lawlor D.A.
        • Bergman R.N.
        • Watanabe R.M.
        • Uda M.
        • Tuomilehto J.
        • Coresh J.
        • Hirschhorn J.N.
        • Shuldiner A.R.
        • Schlessinger D.
        • Collins F.S.
        • Davey Smith G.
        • Boerwinkle E.
        • Cao A.
        • Boehnke M.
        • Abecasis G.R.
        • Mohlke K.L.
        Common variants in the GDF5-UQCC region are associated with variation in human height.
        Nat. Genet. 2008; 40: 198-203
      3. Y.S. Aulchenko, M.V. Struchalin, N.M. Belonogova, T.I. Axenovich, M.N. Weedon, A. Hofman, A.G. Uitterlinden, M. Kayser, B.A. Oostra, C.M. van Duijn, A.C.J.W. Janssens, P.M. Borodin, Predicting human height by Victorian and genomic methods, Eur. J. Hum. Genet., in press.

        • Koops B.J.
        • Schellekens H.M.
        Forensic DNA phenotyping: regulatory issues.
        Columbia Sci. Technol. Law Rev. 2008; 9: 158-202
        • Ossorio P.N.
        About face: forensic genetic testing for race and visible traits.
        J. Law Med. Ethics. 2006; 34: 277-292
        • Whittall H.
        The forensic use of DNA: scientific success story, ethical minefield.
        Biotechnol. J. 2008; 3: 303-305
      4. The International HapMap Project.
        Nature. 2003; 426: 789-796
        • Spinney L.
        Eyewitness identification: line-ups on trial.
        Nature. 2008; 453: 442-444
        • M’Charek A.
        Silent witness, articulate collective: DNA evidence and the inference of visible traits.
        Bioethics. 2008; 22: 519-528