Advertisement
Letter to the Editor| Volume 6, ISSUE 5, e129-e130, September 2012

Download started.

Ok

How to distinguish genetically between an alleged father and his monozygotic twin: A thought experiment

Published:December 16, 2011DOI:https://doi.org/10.1016/j.fsigen.2011.11.003

      Abstract

      Recently, a first direct estimate of the single base-pair substitution rate in the human germline was derived from genome-wide DNA sequence data. This result has shed new light upon the question of whether cutting-edge molecular genetic analysis could, in a paternity dispute, potentiate discrimination between two alleged fathers who are monozygotic (MZ) twins. Such paternity cases are not infrequent and usually receive a high level of public attention. We performed a ‘thought experiment’, the outcome of which strongly suggests that, by a combination of currently available laboratory techniques, paternity testing is indeed feasible in the context of MZ twins. Taking into consideration what is known about the biology of the human male germline, we would predict that >80% of the offspring of one twin brother would carry at least one germline mutation that would be detectable in the sperm of their father, but not in that of the other twin.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bruder C.E.
        • Piotrowski A.
        • Gijsbers A.A.
        • Andersson R.
        • Erickson S.
        • Diaz de Ståhl T.
        • Menzel U.
        • Sandgren J.
        • von Tell D.
        • Poplawski A.
        • Crowley M.
        • Crasto C.
        • Partridge E.C.
        • Tiwari H.
        • Allison D.B.
        • Komorowski J.
        • van Ommen G.J.
        • Boomsma D.I.
        • Pedersen N.L.
        • den Dunnen J.T.
        • Wirdefeldt K.
        • Dumanski J.P.
        Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles.
        Am. J. Hum. Genet. 2008; 82: 763-771
        • Kaminsky Z.A.
        • Tang T.
        • Wang S.C.
        • Ptak C.
        • Oh G.H.
        • Wong A.H.
        • Feldcamp L.A.
        • Virtanen C.
        • Halfvarson J.
        • Tysk C.
        • McRae A.F.
        • Visscher P.M.
        • Montgomery G.W.
        • Gottesman I.I.
        • Martin N.G.
        • Petronis A.
        DNA methylation profiles in monozygotic and dizygotic twins.
        Nat. Genet. 2009; 41: 240-245
        • Hall J.G.
        Twinning.
        Lancet. 2003; 362: 735-743
        • Moore K.L.
        • Persaud T.V.N.
        The Developing Human: Clinically Oriented Embryology.
        7th edition. Saunders, Philadelphia, PA2003
        • Drost J.B.
        • Lee W.R.
        Comparisons of spontaneous germline mutation rates among drosophila, mouse, and human.
        Environ. Mol. Mutagen. 1995; 25: 48-64
        • Conrad D.F.
        • Keebler J.E.
        • DePristo M.A.
        • Lindsay S.J.
        • Zhang Y.
        • Casals F.
        • Idaghdour Y.
        • Hartl C.L.
        • Torroja C.
        • Garimella K.V.
        • Zilversmit M.
        • Cartwright R.
        • Rouleau G.A.
        • Daly M.
        • Stone E.A.
        • Hurles M.E.
        • Awadalla P.
        • 1000 Genomes Project
        • Abecasis G.R.
        • Altshuler D.
        • Auton A.
        • Brooks L.D.
        • Durbin R.M.
        • Gibbs R.A.
        • Hurles M.E.
        • McVean G.A.
        Variation in genome-wide mutation rates within and between human families.
        Nat. Genet. 2011; 43: 712-714
        • Stenson P.D.
        • Mort M.
        • Ball E.V.
        • Howells K.
        • Phillips A.D.
        • Thomas N.S.
        • Cooper D.N.
        The human gene mutation database: 2008 update.
        Genome Med. 2009; 1: 13
        • Baranzini S.E.
        • Mudge J.
        • van Velkinburgh J.C.
        • Khankhanian P.
        • Khrebtukova I.
        • Miller N.A.
        • Zhang L.
        • Farmer A.D.
        • Bell C.J.
        • Kim R.W.
        • May G.D.
        • Woodward J.E.
        • Caillier S.J.
        • McElroy J.P.
        • Gomez R.
        • Pando M.J.
        • Clendenen L.E.
        • Ganusova E.E.
        • Schilkey F.D.
        • Ramaraj T.
        • Khan O.A.
        • Huntley J.J.
        • Luo S.
        • Kwok P.Y.
        • Wu T.D.
        • Schroth G.P.
        • Oksenberg J.R.
        • Hauser S.L.
        • Kingsmore S.F.
        Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis.
        Nature. 2010; 464: 1351-1356