Abstract
Keywords
1. Introduction
- Rothberg J.M.
- Hinz W.
- Rearick T.M.
- Schultz J.
- Mileski W.
- Davey M.
- Leamon J.H.
- Johnson K.
- Milgrew M.J.
- Edwards M.
- Hoon J.
- Simons J.F.
- Marran D.
- Myers J.W.
- Davidson J.F.
- Branting A.
- Nobile J.R.
- Puc B.P.
- Light D.
- Clark T.A.
- Huber M.
- Branciforte J.T.
- Stoner I.B.
- Cawley S.E.
- Lyons M.
- Fu Y.
- Homer N.
- Sedova M.
- Miao X.
- Reed B.
- Sabina J.
- Feierstein E.
- Schorn M.
- Alanjary M.
- Dimalanta E.
- Dressman D.
- Kasinskas R.
- Sokolsky T.
- Fidanza J.A.
- Namsaraev E.
- McKernan K.J.
- Williams A.
- Roth G.T.
- Bustillo J.
2. Materials and methods
2.1 Samples and DNA extraction
2.2 PCR amplification
2.3 Sanger-type sequencing
- Table S1
Summary of updated sequencing primers relative to the protocol in Ref. [
[9]].
2.4 Library construction for the PGM
2.5 Template preparation
2.6 PGM sequencing
2.7 PGM data analysis
- Table S2
Software settings of NextGENe (SoftGenetics).
2.8 Comparing PGM to STS data
3. Results
Location | 100 bp chemistry | 200 bp chemistry | 200 bp chemistry_NextGENe | ||||||
---|---|---|---|---|---|---|---|---|---|
# of differences | False positives | False negatives | # of differences | False positives | False negatives | # of differences | False positives | False negatives | |
HVS-1 (16183–16189) | 2 | 2 | 1 | 1 | 12 | 6 | 6 | ||
HVS-1 (16190–16194) | 5 | 3 | 2 | 3 | 3 | 2 | 2 | ||
HVS-2 (302–310) | 16 | 16 | 14 | 14 | 1 | 1 | |||
HVS-2 (311–316) | 31 | 31 | 33 | 33 | 1 | 1 | |||
HVS-3 (567–574) | 1 | 1 | 2 | 2 | 1 | 1 | |||
AC-stretch | 0 | 0 | 2 | 2 | |||||
Indels | 11 | 9 | 2 | 13 | 11 | 2 | 40 | 40 | |
Substitutions | 29 | 26 | 3 | 15 | 1 | 14 | 6 | 2 | 4 |
Pointheteroplasmy | 0 | 0 | 1 | 1 | |||||
Total | 95 | 81 | 66 |
- Table S3
Summary of full mtGenome haplotypes generated by Sanger-type sequencing.
- Table S4
Detailed summary of observed differences between STS and PGM (variant caller).
3.1 Homoplymeric C-tracts in HVS-1 (16183–16194), HVS-2 (302–310 and 310–316) and HVS-3 (567–574)
3.2 Deletions outside the hypervariable segments
- Table S5
Summary of positions that displayed deletions and substitutions in PGM variant cells.
3.3 Substitutions
Substitutions | |||||
---|---|---|---|---|---|
False negatives | 100 bp chemistry | 200 bp chemistry | |||
10664T | WGS02 | WGS02 | |||
10664T | WGS04 | ||||
10664T | WGS05 | ||||
13651G | WGS34 | ||||
14374C | WGS01 | ||||
16166C | WGS01 | ||||
16172C | WGS01 | ||||
295T | WGS18 | ||||
456T | WGS15 | ||||
456T | WGS17 | ||||
456T | WGS23 | ||||
456T | WGS27 | ||||
493G | WGS34 | ||||
5442C | WGS03 | ||||
8251A | WGS02 | ||||
961C | WGS03 | ||||
17 | |||||
Substitutions | |||||
False positives | 100 bp chemistry | 200 bp chemistry | |||
10651G | WGS02 | CV 207 VF 23 | |||
10651G | WGS05 | CV 402 VF 26 | |||
10651C | WGS05 | CV 402 VF 20 | |||
11147C | WGS12 | CV 151 VF 33 | |||
11604C | WGS10 | CV 98 VF 40 | |||
12797C | WGS12 | CV 384 VF 36 | |||
12959T | WGS13 | CV 87 VF 55 | |||
13159G | WGS12 | CV 213 VF 23 | |||
13507C | WGS11 | CV 272 VF 20 | |||
14912A | WGS06 | CV 163 VF 35 | |||
14955T | WGS11 | CV 415 VF 29 | |||
15618C | WGS13 | CV 72 VF 25 | |||
1902T | WGS06 | CV 133 VF 75 | |||
2664C | WGS05 | CV 200 VF 33 | |||
2689A | WGS02 | CV 369 VF 26 | |||
2689A | WGS05 | CV 750 VF 32 | |||
2689A | WGS40 | CV 1205 VF 22 | |||
2933A | WGS13 | CV 220 VF 22 | |||
299A | WGS08 | CV 82 VF 20 | |||
3226T | WGS06 | CV 145 VF 24 | |||
3229A | WGS06 | CV 252 VF 38 | |||
3573T | WGS10 | CV 59 VF 29 | |||
392C | WGS13 | CV 83 VF 58 | |||
494G | WGS34 | CV 42 VF 60 | |||
534T | WGS13 | CV 29 VF 45 | |||
86T | WGS10 | CV 280 VF 60 | |||
948C | WGS12 | CV 350 VF 41 | |||
962T | WGS07 | CV 84 VF 21 | |||
27 |
3.4 Point heteroplasmy
Sample | STS | PGM – variant caller | |
---|---|---|---|
100 bp chemistry | 200 bp chemistry | ||
WGS01 | 6367Y | 6367C | 6367C |
Var. Freq. = 25, cv = 260 | Var. Freq. = 22, cv = 245 | ||
WGS03 | 966M | Not found | 966C |
Var. Freq. = 66, cv = 161 | |||
WGS05 | 204Y | Not found | nd |
WGS09 | 8473Y | 8473C | nd |
Var. Freq. = 41, cv = 79 | |||
WGS11 | 16245Y | Not found | nd |
WGS14 | 15623R | 15623A | 15623A |
Var. Freq. = 19, cv = 643 | Var. Freq. = 26, cv = 689 | ||
16391R | 16391A | 16391A | |
Var. Freq. = 48, cv = 519 | Var. Freq. = 39, cv = 593 | ||
WGS15 | 9966R | 9966A | 9966A |
Var. Freq. = 72, cv = 563 | Var. Freq. = 68, cv = 1248 | ||
WGS18 | 152Y | 152C | 152C |
Var. Freq. = 72, cv = 438 | Var. Freq. = 75, cv = 622 | ||
1578R | 1578R | 1578R | |
Var. Freq. = 16, cv = 575 | Var. Freq. = 16, cv = 897 | ||
WGS20 | 16201Y | 16201Y | 16201Y |
Var. Freq. = 10, cv = 145 | Var. Freq. = 18, cv = 272 | ||
WGS29 | 195Y | nd | 195C |
Var. Freq. = 67, cv = 3743 | |||
WGS36 | 8252Y | 8252T | 8252T |
Var. Freq. = 31, cv = 216 | Var. Freq. = 44, cv = 371 | ||
WGS42 | 234R | nd | 234G |
Var. Freq. = 47, cv = 2762 |
- Figure S1
Depiction of point heteroplasmies with STS and PGM.
3.5 Comparison to other alignment algorithms
- Figure S2
Sample WGS28 – comparison of sequence calls with STS.
- Figure S3
Comparison of STS consensus haplotype and NextGENe output from PGM generated mtGenome data from sample WGS42 (200 bp chemistry).
- Table S6
Summary of discrepant Ion Torrent variant calls analyzed with NextGENe.
- Figure S4
456T results STS, NextGENe.
- Figure S5
10664T results STS, NextGENe.
4. Discussion
5. Conclusions
Disclaimer
Acknowledgements
References
- Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis.Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 3605-3609
- EMPOP—a forensic mtDNA database.Forensic Sci. Int. Genet. 2007; 1: 88-92
- Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation.Hum. Mutat. 2009; 30: E386-E394
- Haplogrouping mitochondrial DNA sequences in legal medicine/forensic genetics.Int. J. Legal Med. 2012; 126: 901-916
- Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA).Forensic Sci. Int. Genet. 2013; (submitted for publication)
- mtDNA data mining in GenBank needs surveying.Am. J. Hum. Genet. 2009; 85: 929-933
- Median network analysis of defectively sequenced entire mitochondrial genomes from early and contemporary disease studies.J. Hum. Genet. 2009; 54: 174-181
- Application of a west Eurasian-specific filter for quasi-median network analysis: sharpening the blade for mtDNA error detection.Forensic Sci. Int. Genet. 2011; 2: 133-137
- Sequencing strategy for the whole mitochondrial genome resulting in high quality sequences.BMC Genomics. 2009; 10: 139
- mtGenome reference population databases and the future of forensic mtDNA analysis.Forensic Sci. Int. Genet. 2011; 5: 222-225
- Current next generation sequencing technology may not meet forensic standards.Forensic Sci. Int. Genet. 2012; 6: 143-145
- Application of full mitochondrial genome sequencing using 454 GS FLX pyrosequencing.Forensic Sci. Int.: Genet. Suppl. Series. 2009; 2: 518-519
- Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy.Croat. Med. J. 2011; 52: 299-313
- Application of next generation sequencing technologies to the identification of highly degraded unknown soldiers’ remains.Forensic Sci. Int.: Genet. Suppl. Series. 2011; 3: e540-e541
- An integrated semiconductor device enabling non-optical genome sequencing.Nature. 2011; 475: 348-352
- Mitochondrial DNA control region data from indigenous Angolan Khoe-San lineages.Forensic Sci. Int. Genet. 2012; 6: 662-663
- Accumulation of mutations over the entire mitochondrial genome of breast cancer cells obtained by tissue microdissection.Breast Cancer Res. Treat. 2011; 128: 327-336
- Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material.Biotechniques. 1991; 10: 506-513
- Species identification by means of the cytochrome b gene.Int. J. Legal Med. 2000; 114: 23-28
- Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA.Nat. Genet. 1999; 23: 147
- Consistent treatment of length variants in the human mtDNA control region: a reappraisal.Int. J. Legal Med. 2008; 122: 11-21
- A survey of sequence alignment algorithms for next-generation sequencing.Brief. Bioinform. 2010; 11: 473-483
- Integrative genomics viewer.Nat. Biotechnol. 2011; 29: 24-26
- Evaluating sequence-derived mtDNA length heteroplasmy by amplicon size analysis.Forensic Sci. Int. Genet. 2011; 5: 142-145
- DNA Commission of the International Society for Forensic Genetics: guidelines for mitochondrial DNA typing.Forensic Sci. Int. 2000; 110: 79-85
- Mass spectrometric base composition profiling: implications for forensic mtDNA databasing.Forensic Sci. Int. Genet. 2013; (submitted for publication)
- Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles.Forensic Sci. Int. 2001; 124: 83-91
- Molecular characterization of the canine mitochondrial DNA control region for forensic applications.Int. J. Legal Med. 2007; 121: 411-416
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution - Non Commercial - ShareAlike |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Offer derivative works under a different CC license
Elsevier's open access license policy
ScienceDirect
Access this article on ScienceDirectLinked Article
- WITHDRAWN: Erratum to “Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM)” [Forensic Sci. Int.: Genet. 7 (2013) 543–549]Forensic Science International: Genetics
- PreviewThe Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.fsigen.2013.09.007 . The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy .
- Full-Text
- Preview