Advertisement
Research Article| Volume 9, P111-117, March 2014

Evaluation of the IrisPlex DNA-based eye color prediction assay in a United States population

  • Gina M. Dembinski
    Affiliations
    Department of Biology and Forensic and Investigative Sciences Program, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202, USA
    Search for articles by this author
  • Christine J. Picard
    Correspondence
    Corresponding author at: 723 W. Michigan Street, SL 306, Indianapolis, IN 46202, USA. Tel.: +1 317 278 1050.
    Affiliations
    Department of Biology and Forensic and Investigative Sciences Program, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202, USA
    Search for articles by this author
Published:December 16, 2013DOI:https://doi.org/10.1016/j.fsigen.2013.12.003

      Abstract

      DNA phenotyping is a rapidly developing area of research in forensic biology. Externally visible characteristics (EVCs) can be determined based on genotype data, specifically based on single nucleotide polymorphisms (SNPs). These SNPs are chosen based on their association with genes related to the phenotypic expression of interest, with known examples in eye, hair, and skin color traits. DNA phenotyping has forensic importance when unknown biological samples at a crime scene do not result in a criminal database hit; a phenotypic profile of the sample can therefore be used to develop investigational leads. IrisPlex, an eye color prediction assay, has previously shown high prediction rates for blue and brown eye color in a Dutch European population. The objective of this work was to evaluate its utility in a North American population. We evaluated six SNPs included in the IrisPlex assay in population sample collected from a USA college campus. We used a quantitative method of eye color classification based on (RGB) color components of digital photographs of the eye taken from each study volunteer so that each eye was placed in one of three eye color categories: brown, intermediate, or blue. Objective color classification was shown to correlate with basic human visual determination making it a feasible option for use in future prediction assay development. Using these samples and various models, the maximum prediction accuracies of the IrisPlex system after allele frequency adjustment was 58% and 95% brown and blue eye color predictions, respectively, and 11% for intermediate eye colors. Future developments should include incorporation of additional informative SNPs, specifically related to the intermediate eye color, and we recommend the use of a Bayesian approach as a prediction model as likelihood ratios can be determined for reporting purposes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Walsh S.
        • Liu F.
        • Ballantyne K.N.
        • van Oven M.
        • Lao O.
        • Kayser M.
        IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information.
        Forensic Sci. Int. Genet. 2011; 5: 170-180
        • Kayser M.
        • Schneider P.
        DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations.
        Forensic Sci. Int. Genet. 2009; 3: 154-161
        • Valenzuela R.K.
        • Henderson M.S.
        • Walsh M.H.
        • Garrison N.A.
        • Kelch J.T.
        • Cohen-Barak O.
        • Erickson D.T.
        • John Meaney F.
        • Bruce Walsh J.
        • Cheng K.C.
        • Ito S.
        • Wakamatsu K.
        • Frudakis T.
        • Thomas M.
        • Brilliant M.H.
        Predicting phenotype from genotype: normal pigmentation.
        J. Forensic Sci. 2010; 55: 315-322
        • Tully G.
        Genotype versus phenotype: human pigmentation.
        Forensic Sci. Int. Genet. 2007; 1: 105-110
        • Sulem P.
        • Gudbjartsson D.F.
        • Stacey S.N.
        • Helgason A.
        • Rafnar T.
        • Magnusson K.P.
        • Manolescu A.
        • Karason A.
        • Palsson A.
        • Thorleifsson G.
        • Jakobsdottir M.
        • Steinberg S.
        • Pálsson S.
        • Jonasson F.
        • Sigurgeirsson B.
        • Thorisdottir K.
        • Ragnarsson R.
        • Benediktsdottir K.R.
        • Aben K.K.
        • Kiemeney L.A.
        • Olafsson J.H.
        • Gulcher J.
        • Kong A.
        • Thorsteinsdottir U.
        • Stefansson K.
        Genetic determinants of hair, eye and skin pigmentation in Europeans.
        Nat. Genet. 2007; 39: 1443-1452
        • Aditya S.
        • Sharma A.K.
        • Bhattacharyya C.N.
        • Chaudhuri K.
        Generating STR profile from touch DNA.
        J. Forensic Legal Med. 2011; 18: 295-298
      1. Frudakis T. Molecular Photofitting: Predicting Ancestry and Phenotype from DNA. 1st ed. Academic Press, Burlington, MA2008
        • Sturm R.A.
        Molecular genetics of human pigmentation diversity.
        Hum. Mol. Genet. 2009; 18: R9-R17
        • Frudakis T.
        • Thomas M.
        • Gaskin Z.
        • Venkateswarlu K.
        • Chandra K.S.
        • Ginjupalli S.
        • Gunturi S.
        • Natrajan S.
        • Ponnuswamy V.K.
        • Ponnuswamy K.N.
        Sequences associated with human iris pigmentation.
        Genetics. 2003; 165: 2071-2083
        • Pośpiech E.
        • Draus-Barini J.
        • Kupiec T.
        • Wojas-Pelc A.
        • Branicki W.
        Gene–gene interactions contribute to eye colour variation in humans.
        J. Hum. Genet. 2011; 56: 447-455
        • Liu F.
        • Wollstein A.
        • Hysi P.G.
        • Ankra-Badu G.A.
        • Spector T.D.
        • Park D.
        • Zhu G.
        • Larsson M.
        • Duffy D.L.
        • Montgomery G.W.
        • Mackey D.A.
        • Walsh S.
        • Lao O.
        • Hofman A.
        • Rivadeneira F.
        • Vingerling J.R.
        • Uitterlinden A.G.
        • Martin N.G.
        • Hammond C.J.
        • Kayser M.
        Digital quantification of human eye color highlights genetic association of three new loci.
        PLoS Genet. 2010; 6: e1000934
        • Branicki W.
        • Brudnik U.
        • Wojas-Pelc. A.
        Interactions between HERC2, OCA2 and MC1R may influence human pigmentation phenotype.
        Ann. Hum. Genet. 2009; 73: 160-170
        • Frudakis T.
        • Terravainen T.
        • Thomas M.
        Multilocus OCA2 genotypes specify human iris colors.
        Hum. Genet. 2007; 122: 311-326
        • Han J.L.
        • Kraft P.
        • Nan H.
        • Guo Q.
        • Chen C.
        • Qureshi A.
        • Hankinson S.E.
        • Hu F.B.
        • Duffy D.L.
        • Zhao Z.Z.
        • Martin N.G.
        • Montgomery G.W.
        • Hayward N.K.
        • Thomas G.
        • Hoover R.N.
        • Chanock S.
        • Hunter D.J.
        A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation.
        PLoS Genet. 2008; 4: e1000074
        • Mengel-From J.
        • Børsting C.
        • Sanchez J.J.
        • Eiberg H.
        • Morling N.
        Human eye colour and HERC2, OCA2, and MATP.
        Forensic Sci. Int. Genet. 2010; 4: 323-328
        • Eiberg H.
        • Troelsen J.
        • Nielsen M.
        • Mikkelsen A.
        • Mengel-From J.
        • Kjaer K.W.
        • Hansen L.
        Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression.
        Hum. Genet. 2008; 123: 177-187
        • Pneuman A.
        • Budimlija Z.M.
        • Caragine T.
        • Prinz M.
        • Wurmbach E.
        Verification of eye and skin color predictors in various populations.
        Legal Med. 2012; 14: 78-83
        • Pośpiech E.
        • Draus-Barini J.
        • Kupiec T.
        • Wojas-Pelc A.
        • Branicki W.
        Prediction of eye color from genetic data using Bayesian approach.
        J. Forensic Sci. 2012; 57: 880-886
        • Liu F.
        • van Duijn K.
        • Vingerling J.
        • Hofman A.
        • Uitterlinden A.
        • Janssens A.
        • Kayser M.
        Eye color and the prediction of complex phenotypes from genotypes.
        Curr. Biol. 2009; 19: R3-R192
        • Sturm R.A.
        • Duffy D.L.
        • Zhao Z.Z.
        • Leite F.P.N.
        • Stark M.S.
        • Hayward N.K.
        • Martin N.G.
        • Montgomery G.W.
        A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color.
        Am. J. Hum. Genet. 2008; 82: 424-431
        • Prestes P.R.
        • Mitchell R.J.
        • Daniel R.
        • Ballantyne K.N.
        • van Oorschot R.A.H.
        Evaluation of the IrisPlex system in admixed individuals.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e283-e284
        • Walsh S.
        • Wollstein A.
        • Liu F.
        • Chakravarthy U.
        • Rahu M.
        • Seland J.H.
        • Soubrane G.
        • Tomazzoli L.
        • Topouzis F.
        • Vingerling J.R.
        • Vioque J.
        • Fletcher A.E.
        • Ballantyne K.N.
        • Kayser M.
        DNA-based eye colour prediction across Europe with the IrisPlex system.
        Forensic Sci. Int. Genet. 2012; 6: 330-340
        • Walsh S.
        • Lindenbergh A.
        • Zuniga S.S.
        • Sijen T.
        • de Knijff P.
        • Kayser M.
        • Ballantyne K.N.
        Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence.
        Forensic Sci. Int. Genet. 2011; 5: 464-471
        • Ruiz Y.
        • Phillips C.
        • Gomez-Tato A.
        • Alvarez-Dios J.
        • Casares de Cal M.
        • Cruz R.
        • Maroñas O.
        • Söchtig J.
        • Fondevila M.
        • Rodriguez-Cid M.J.
        • Carracedo Á.
        • Lareu M.V.
        Further development of forensic eye color predictive tests.
        Forensic Sci. Int. Genet. 2013; 7: 28-40
        • Purps J.
        • Geppert M.
        • Nagy M.
        • Roewer L.
        Evaluation of the IrisPlex eye colour prediction tool in a German population sample.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e202-e203
        • Sturm R.
        • Larsson M.
        Genetics of human iris colour and patterns.
        Pigment Cell Melanoma Res. 2009; 22: 544-562
        • Walsh S.
        • Liu F.
        • Wollstein A.
        • Kovatsi L.
        • Ralf A.
        • Kosiniak-Kamysz A.
        • Branicki W.
        • Kayser M.
        The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA.
        Forensic Sci. Int. Genet. 2013; 7: 98-115

      Linked Article