Review| Volume 10, P1-11, May 2014

Current and future directions of DNA in wildlife forensic science

Published:January 02, 2014DOI:


      Wildlife forensic science may not have attained the profile of human identification, yet the scale of criminal activity related to wildlife is extensive by any measure. Service delivery in the arena of wildlife forensic science is often ad hoc, unco-ordinated and unregulated, yet many of those currently dedicated to wildlife conservation and the protection of endangered species are striving to ensure that the highest standards are met. The genetic markers and software used to evaluate data in wildlife forensic science are more varied than those in human forensic identification and are rarely standardised between species. The time and resources required to characterise and validate each genetic maker is considerable and in some cases prohibitive. Further, issues are regularly encountered in the construction of allelic databases and allelic ladders; essential in human identification studies, but also applicable to wildlife criminal investigations. Accreditation and certification are essential in human identification and are currently being strived for in the forensic wildlife community. Examples are provided as to how best practice can be demonstrated in all areas of wildlife crime analysis and ensure that this field of forensic science gains and maintains the respect it deserves. This review is aimed at those conducting human identification to illustrate how research concepts in wildlife forensic science can be used in the criminal justice system, as well as describing the real importance of this type of forensic analysis.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Ogden R.
        • Dawnay N.
        • McEwing R.
        Wildlife DNA forensics—bridging the gap between conservation genetics and law enforcement.
        Endang. Species Res. 2009; 9: 179-195
        • Caniglia R.
        • et al.
        Forensic DNA against wildlife poaching: identification of a serial wolf killing in Italy.
        Forensic Sci. Int. Genet. 2010; 4: 334-338
        • Coghlan M.L.
        • et al.
        Egg forensics: an appraisal of DNA sequencing to assist in species identification of illegally smuggled eggs.
        Forensic Sci. Int. Genet. 2012; 6: 268-273
        • Hsieh H.M.
        • et al.
        Species identification of Kachuga tecta using the cytochrome b gene.
        J. Forensic Sci. 2006; 51: 52-56
        • Hsieh H.-M.
        • et al.
        Species identification of rhinoceros horns using the cytochrome b gene.
        Forensic Sci. Int. 2003; 136: 1-11
        • Hsieh H.-M.
        • et al.
        Establishing the pangolin mitochondrial D-loop sequences from the confiscated scales.
        Forensic Sci. Int. Genet. 2011; 5: 303-307
        • Jun J.
        • et al.
        Wildlife forensics using mitochondrial DNA sequences: species identification based on hairs collected in the field and confiscated tanned Felidae leathers.
        Genes Genomics. 2011; 33: 721-726
        • Wasser S.K.
        • et al.
        Assigning African elephant DNA to geographic region of origin: applications to the Ivory trade.
        Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 14847-14852
        • Fumiere O.
        • et al.
        Methods of detection, species identification and quantification of processed animal proteins in feedingstuffs.
        Biotechnol. Agron. Soc. Environ. 2009; 13: 59-70
        • Huffman J.
        • Wallace J.
        Huffman J. Wallace J. Wildlife Forensics: Methods and Applications. Wiley-Blackwell, Chichester, UK2012
        • Linacre A.M.
        • Tobe S.S.
        Wildlife DNA Analysis.
        John Wiley & Sons, Chichester, UK2013
        • Lee J.C.I.
        • et al.
        DNA profiling of shahtoosh.
        Electrophoresis. 2006; 27: 3359-3362
        • Singh C.S.
        • et al.
        Species identification from dried snake venom.
        J. Forensic Sci. 2012; 57: 826-828
        • Symondson W.O.C.
        Molecular identification of prey in predator diets.
        Mol. Ecol. 2002; 11: 627-641
        • Berry O.
        • Sarre S.D.
        Gel-free species identification using melt-curve analysis.
        Mol. Ecol. Notes. 2007; 7: 1-4
        • Berry O.
        • et al.
        Faecal DNA detection of invasive species: the case of feral foxes in Tasmania.
        Wildlife Res. 2007; 34: 1-7
        • Coghlan M.L.
        • et al.
        Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns.
        PLoS Genet. 2012; 8: 436-446
        • Lee J.
        • et al.
        Ivory identification by DNA profiling of cytochrome b gene.
        Int. J. Legal Med. 2009; 123: 117-121
        • Fredholm M.
        • Wintero A.K.
        Efficient resolution of parentage in dogs by amplification of microsatellites.
        Anim. Genet. 1996; 27: 19-23
        • MenottiRaymond M.
        • et al.
        Genetic individualization of domestic cats using feline STR loci for forensic applications.
        J. Forensic Sci. 1997; 42: 1039-1051
        • Menotti-Raymond M.
        • et al.
        A population genetic database of cat breeds developed in coordination with a domestic cat STR multiplex.
        J. Forensic Sci. 2012; 57: 596-601
        • Clarke M.
        • Vandenberg N.
        Dog attack: the application of canine DNA profiling in forensic casework.
        Forensic Sci. Med. Pathol. 2010; 6: 151-157
        • Lee J.C.I.
        • et al.
        Species identification using the cytochrome b gene of commercial turtle shells.
        Forensic Sci. Int. Genet. 2009; 3: 67-73
        • Moore M.K.
        • et al.
        Use of restriction fragment length polymorphisms to identify sea turtle eggs and cooked meats to species.
        Conserv. Genet. 2003; 4: 95-103
        • Chapman D.D.
        • et al.
        A streamlined, bi-organelle, multiplex PCR approach to species identification: application to global conservation and trade monitoring of the great white shark, Carcharodon carcharias.
        Conserv. Genet. 2003; 4: 415-425
        • Ward R.D.
        • et al.
        DNA barcoding Australia's fish species.
        Philos. Trans. R. Soc. B: Biol. Sci. 2005; 360: 1847-1857
        • Hebert P.D.N.
        • et al.
        Identification of birds through DNA barcodes.
        PLoS Biol. 2004; 2: 1657-1663
        • Dawnay N.
        • et al.
        A forensic STR profiling system for the Eurasian badger: a framework for developing profiling systems for wildlife species.
        Forensic Sci. Int. Genet. 2008; 2: 47-53
        • Dawnay N.
        • et al.
        Genetic data from 28 STR loci for forensic individual identification and parentage analyses in 6 bird of prey species.
        Forensic Sci. Int. Genet. 2009; 3: pe63-pe69
        • Linacre A.
        • et al.
        ISFG: recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations.
        Forensic Sci. Int. Genet. 2011; 5: 501-505
      1. Forensic science in wildlife investigations.
        International Forensic Science and Investigation Series. CRC Press, Boca Raton2009
        • Brower A.V.Z.
        Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae).
        Syst. Biodiver. 2006; 4: 127-132
        • Hawk D.
        Society for wildlife forensic science.
        in: Huffman J. Wallace J. Wildlife Forensics. Wiley-Blackwell, Chichester, UK2012: 15-34
        • Butler J.
        Advanced Topics in Forensic DNA Typing: Methodology.
        Academic Press, San Diego, USA2012
        • Goodwin W.
        • Linacre A.
        • Hadi S.
        Introduction to Forensic Genetics.
        John Wiley & Sons, Chichester, UK2011
        • Kimpton C.
        • et al.
        Evaluation of an automated DNA profiling system employing multiplex amplification of 4 tetrameric STR loci.
        Int. J. Legal Med. 1994; 106: 302-311
        • Kayser M.
        • et al.
        A comprehensive survey of human Y-chromosomal microsatellites.
        Am. J. Hum. Genet. 2004; 74: 1183-1197
        • Roewer L.
        Y chromosome STR typing in crime casework.
        Forensic Sci. Med. Pathol. 2009; 5: 77-84
        • Nothnagel M.
        • et al.
        Collaborative genetic mapping of 12 forensic short tandem repeat (STR) loci on the human X chromosome.
        Forensic Sci. Int. Genet. 2012; 6: 778-784
        • Diegoli T.M.
        • Coble M.D.
        Development and characterization of two mini-X chromosomal short tandem repeat multiplexes.
        Forensic Sci. Int. Genet. 2011; 5: 415-421
        • Gusmao L.
        • et al.
        Capillary electrophoresis of an X-chromosome STR decaplex for kinship deficiency cases.
        Methods Mol. Biol. (Clifton, N.J.). 2012; 830: 57-71
        • Bright J.-A.
        • Curran J.M.
        • Buckleton J.S.
        Relatedness calculations for linked loci incorporating subpopulation effects.
        Forensic Sci. Int. Genet. 2013; 7: 380-383
        • McPherson J.D.
        • et al.
        A physical map of the human genome.
        Nature. 2001; 409: 934-941
      2. Buckelton J. Triggs C.M. Walsh S.J. Forensic DNA Evidence Interpretation. CRC Press, Boca Raton2005
        • Berger B.
        • Eichmann C.
        • Parson W.
        Forensic canine STR analysis.
        in: Coyle H. Nonhuman DNA Typing. CRC Press, Boca Raton2008
        • Dimsoski P.
        Development of a 17-plex microsatellite polymerase chain reaction kit for genotyping horses.
        Croat. Med. J. 2003; 44: 332-335
        • Kanthaswamy S.
        • et al.
        Canine population data generated from a multiplex STR kit for use in forensic casework.
        J. Forensic Sci. 2009; 54: 829-840
        • Signer E.N.
        • Jeffreys A.J.
        Rapid genotyping of a pig minisatellite using long PCR.
        Anim. Genet. 1997; 28: 311
        • van Asch B.
        • et al.
        A new autosomal STR nineplex for canine identification and parentage testing.
        Electrophoresis. 2009; 30: 417-423
        • van Asch B.
        • et al.
        Genetic profiles and sex identification of found-dead wolves determined by the use of an 11-loci PCR multiplex.
        Forensic Sci. Int. Genet. 2010; 4: 68-72
        • Andreassen R.
        • et al.
        A forensic DNA profiling system for Northern European brown bears (Ursus arctos).
        Forensic Sci. Int. Genet. 2012; 6: 798-809
        • van de Goor L.H.P.
        • Panneman H.
        • van Haeringen W.A.
        A proposal for standardization in forensic bovine DNA typing: allele nomenclature of 16 cattle-specific short tandem repeat loci.
        Anim. Genet. 2009; 40: 630-636
        • van de Goor L.H.P.
        • Panneman H.
        • van Haeringen W.A.
        A proposal for standardization in forensic equine DNA typing: allele nomenclature for 17 equine-specific STR loci.
        Anim. Genet. 2010; 41: 122-127
        • Hedrick P.W.
        Genetics of Populations.
        3rd ed. Jones and Bartlett, Sudbury2005
        • Moore M.K.
        • Kornfield I.L.
        Best practice in wildlife forensic science.
        in: Huffman J. Wallace J. Wildlife Forensics: Methods and Applications. Wiley-Blackwell, Chichester, UK2012: 201-236
        • Balding D.J.
        Estimating products in forensic identification using DNA profiles.
        J. Am. Stat. Assoc. 1995; 90: 839-844
        • Tobe S.S.
        • Linacre A.M.T.
        A technique for the quantification of human and non-human mammalian mitochondrial DNA copy number in forensic and other mixtures.
        Forensic Sci. Int. Genet. 2008; 2: 249-256
        • Hsieh H.-M.
        • et al.
        Cytochrome b gene for species identification of the conservation animals.
        Forensic Sci. Int. 2001; 122: 7-18
        • Sanches A.
        • et al.
        Illegal hunting cases detected with molecular forensics in Brazil.
        Invest. Genet. 2012; 3: 17
        • Wozney K.M.
        • Wilson P.J.
        Real-time PCR detection and quantification of elephantid DNA: species identification for highly processed samples associated with the ivory trade.
        Forensic Sci. Int. 2012; 219: 106-112
        • Linacre A.
        • Tobe S.S.
        An overview to the investigative approach to species testing in wildlife forensic science.
        Invest. Genet. 2011; 2: 2
        • Tobe S.S.
        • Linacre A.
        DNA typing in wildlife crime: recent developments in species identification.
        Forensic Sci. Med. Pathol. 2010; 6: 195-206
        • Lee J.C.-I.
        • et al.
        A novel strategy for avian species identification by cytochrome b gene.
        Electrophoresis. 2008; 29: 2413-2418
        • Dawnay N.
        • et al.
        Validation of the barcoding gene COI for use in forensic genetic species identification.
        Forensic Sci. Int. 2007; 173: 1-6
        • Hebert P.D.N.
        • Ratnasingham S.
        • de Waard J.R.
        Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species.
        Proc. R. Soc. Lond. B: Biol. Sci. 2003; 270: S96-S99
        • Wilson-Wilde L.
        • et al.
        Current issues in species identification for forensic science and the validity of using the cytochrome oxidase I (COI) gene.
        Forensic Sci. Med. Pathol. 2010; 6: 233-241
        • Ferri G.
        • et al.
        Species identification through DNA “barcodes”.
        Genet. Test. Mol. Biomarkers. 2009; 13: 421-426
        • Abe H.
        • Hayano A.
        • Inoue-Murayama M.
        Forensic species identification of large macaws using DNA barcodes and microsatellite profiles.
        Mol. Biol. Rep. 2012; 39: 693-699
        • Meiklejohn K.A.
        • et al.
        Comprehensive evaluation of DNA barcoding for the molecular species identification of forensically important Australian Sarcophagidae (Diptera).
        Invertebr. Syst. 2012; 26: 515-525
        • Dalton D.L.
        • Kotze A.
        DNA barcoding as a tool for species identification in three forensic wildlife cases in South Africa.
        Forensic Sci. Int. 2011; 207: E51-E54
        • Che J.
        • et al.
        Universal COI primers for DNA barcoding amphibians.
        Mol. Ecol. Resour. 2012; 12: 247-258
        • Ivanova N.V.
        • Clare E.L.
        • Borisenko A.V.
        DNA barcoding in mammals.
        Methods Mol. Biol. (Clifton, N.J.). 2012; 858: 153-182
        • Guha S.
        • Kashyap V.K.
        Molecular identification of lizard by RAPD & FINS of mitochondrial 16s rRNA gene.
        Legal Med. (Tokyo, Japan). 2006; 8: 5-10
        • Imaizumi K.
        • et al.
        Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA.
        Int. J. Legal Med. 2007; 121: 184-191
        • Pun K.-M.
        • et al.
        Species identification in mammals from mixed biological samples based on mitochondrial DNA control region length polymorphism.
        Electrophoresis. 2009; 30: 1008-1014
        • Osborne M.J.
        • Christidis L.
        • Norman J.A.
        Molecular phylogenetics of the Diprotodontia (kangaroos, wombats, koala, possums, and allies).
        Mol. Phylogenet. Evol. 2002; 25: 219-228
        • Hebert P.D.N.
        • et al.
        Biological identifications through DNA barcodes.
        Proc. R. Soc. B: Biol. Sci. 2003; 270: 313-321
        • Ferri G.
        • et al.
        Forensic botany: species identification of botanical trace evidence using a multigene barcoding approach.
        Int. J. Legal Med. 2009; 123: 395-401
        • Bruni I.
        • et al.
        Identification of poisonous plants by DNA barcoding approach.
        Int. J. Legal Med. 2010; 124: 595-603
        • Koopman W.J.M.
        • et al.
        Botanical DNA evidence in criminal cases: Knotgrass (Polygonum aviculare L.) as a model species.
        Forensic Sci. Int. Genet. 2012; 6: 366-374
        • Eurlings M.C.M.
        • van Beek H.H.
        • Gravendeel B.
        Polymorphic microsatellites for forensic identification of agarwood (Aquilaria crassna).
        Forensic Sci. Int. 2010; 197: 30-34
        • Kitpipit T.
        • et al.
        The development and validation of a single SNaPshot multiplex for tiger species and subspecies identification—implications for forensic purposes.
        Forensic Sci. Int. Genet. 2012; 6: 250-257
        • Holland M.M.
        • Huffine E.F.
        Molecular analysis of the human mitochondrial DNA control region for forensic identity testing.
        Curr. Protoc. Hum. Genet. 2001; Chapter 14: Unit 14.7
        • Melton T.
        • et al.
        Forensic mitochondrial DNA analysis of 691 casework hairs.
        J. Forensic Sci. 2005; 50: 73-80
        • Melton T.L.
        • Nelson K.
        Forensic mitochondrial DNA analysis: two years of commercial casework experience in the United States.
        Croat. Med. J. 2001; 42: 298-303
        • Nelson K.
        • Melton T.
        Forensic mitochondrial DNA analysis of 116 casework skeletal samples.
        J. Forensic Sci. 2007; 52: 557-561
        • Salas A.
        • et al.
        A cautionary note on switching mitochondrial DNA reference sequences in forensic genetics.
        Forensic Sci. Int. Genet. 2012; 6: E182-E184
        • Isenberg G A.
        Forensic Mitochondrial DNA Analysis: A Different Crime-solving Tool.
        FBI Law Enforcement Bulletin, Quantico, VA, USA2002
        • Groenenberg D.S.J.
        • Neubert E.
        • Gittenberger E.
        Reappraisal of the “Molecular phylogeny of Western Palaearctic Helicidae s.l. (Gastropoda: Stylommatophora)”: When poor science meets GenBank.
        Mol. Phylogenet. Evol. 2011; 61: 914-923
        • Hassanin A.
        • et al.
        Comparisons between mitochondrial genomes of domestic goat (Capra hircus) reveal the presence of numts and multiple sequencing errors.
        Mitochondrial DNA. 2010; 21: 68-76
        • Bidartondo M.I.
        • et al.
        Preserving accuracy in GenBank.
        Science. 2008; 319: 1616
        • Parson W.
        • Bandelt H.-J.
        Extended guidelines for mtDNA typing of population data in forensic science.
        Forensic Sci. Int. Genet. 2007; 1: 13-19
        • Prieto L.
        • et al.
        2006 GEP-ISFG collaborative exercise on mtDNA: reflections about interpretation, artefacts, and DNA mixtures.
        Forensic Sci. Int. Genet. 2008; 2: 126-133
        • Schneider P.M.
        Scientific standards for studies in forensic genetics.
        Forensic Sci. Int. 2007; 165: 238-243
        • Tobe S.S.
        • Kitchener A.C.
        • Linacre A.M.T.
        Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes.
        PLoS One. 2010; 5
        • Tamura K.
        • et al.
        MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0.
        Mol. Biol. Evol. 2007; 24: 1596-1599
        • Guindon S.
        • Gascuel O.
        A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.
        Syst. Biol. 2003; 52: 696-704
        • Felsenstein J.
        Parsimony in systematics—biological and statistical issues.
        Annu. Rev. Ecol. Syst. 1983; 14: 313-333
        • Saitou N.
        • Nei M.
        The neighbor-joining method—a new method for reconstructing phylogenetic trees.
        Mol. Biol. Evol. 1987; 4: 406-425
        • Posada D.
        • Buckley T.R.
        Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests.
        Syst. Biol. 2004; 53: 793-808
        • Huelsenbeck J.P.
        • Ronquist F.
        MRBAYES: Bayesian inference of phylogenetic trees.
        Bioinformatics. 2001; 17: 754-755
        • Kalinowski S.T.
        • Taper M.L.
        • Marshall T.C.
        Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment.
        Mol. Ecol. 2007; 16: 1099-1106
        • Peakall R.
        • Smouse P.E.
        GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update.
        Bioinformatics. 2012; 28: 2537-2539
        • Pritchard J.K.
        • Stephens M.
        • Donnelly P.
        Inference of population structure using multilocus genotype data.
        Genetics. 2000; 155: 945-959
        • Scandura M.
        • et al.
        Fine-scale genetic structure suggests low levels of short-range gene flow in a wolf population of the Italian Apennines.
        Eur. J. Wildlife Res. 2011; 57: 949-958
        • Frosch C.
        • et al.
        Case report of a fatal bear attack documented by forensic wildlife genetics.
        Forensic Sci. Int. Genet. 2011; 5: 342-344
        • Wasser S.K.
        • Clark B.
        • Laurie C.
        The Ivory trail.
        Scientific American. 2009; 301: 68
        • Wasser S.K.
        • et al.
        Combating the illegal trade in African elephant ivory with DNA forensics.
        Conserv. Biol. 2008; 22: 1065-1071
        • Gobush K.
        • Kerr B.
        • Wasser S.
        Genetic relatedness and disrupted social structure in a poached population of African elephants.
        Mol. Ecol. 2009; 18: 722-734
        • Nielsen E.E.
        • et al.
        Gene-associated markers provide tools for tackling illegal fishing and false eco-certification (vols. 3, 851, 2012).
        Nat. Commun. 2013; 4
        • Renfree M.B.
        • et al.
        Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.
        Genome Biology. 2011; 12: R81
        • Freire-Aradas A.
        • et al.
        A new SNP assay for identification of highly degraded human DNA.
        Forensic Sci. Int. Genet. 2012; 6: 341-349
        • Phillips C.
        • et al.
        SNPs as supplements in simple kinship analysis or as core markers in distant pairwise relationship tests: when do SNPs add value or replace well-established and powerful STR tests?.
        Transf. Med. Hemother. 2012; 39: 202-210
        • Schneider P.M.
        Beyond STRs: the role of diallelic markers in forensic genetics.
        Transf. Med. Hemother. 2012; 39: 176-180
        • Yang H.-C.
        • et al.
        Integrative analysis of single nucleotide polymorphisms and gene expression efficiently distinguishes samples from closely related ethnic populations.
        BMC Genomics. 2012; 13
        • Zeng Z.
        • et al.
        Evaluation of 96 SNPs in 14 populations for worldwide individual identification.
        J. Forensic Sci. 2012; 57: 1031-1035
        • Kidd K.K.
        • et al.
        Expanding data and resources for forensic use of SNPs in individual identification.
        Forensic Sci. Int. Genet. 2012; 6: 646-652
        • Kuusisto P.
        Amplification of whole human mitochondrial DNA with thermo scientific phusion high-fidelity DNA polymerases.
        Thermo Scientific. 2012; (Technical Note)
        • Wilson-Wilde L.M.
        • Brandi J.
        • Gutowski S.J.
        The future of forensic science standards.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: pe333-pe334
        • Ogden R.
        Forensic science, genetics and wildlife biology: getting the right mix for a wildlife DNA forensics lab.
        Forensic Sci. Med. Pathol. 2010; 6: 172-179
        • Budowle B.
        • et al.
        Recommendations for animal DNA forensic and identity testing.
        Int. J. Legal Med. 2005; 119: 295-302
        • National Research Council of the National Academies
        Strengthening Forensic Science in the United States: A Path Forward.
        The National Academies Press, Washington, DC, USA2009