Advertisement
Research Article| Volume 15, P21-26, March 2015

Download started.

Ok

Helena, the hidden beauty: Resolving the most common West Eurasian mtDNA control region haplotype by massively parallel sequencing an Italian population sample

Published:September 25, 2014DOI:https://doi.org/10.1016/j.fsigen.2014.09.012

      Highlights

      • We analyzed the most common West Eurasian mtDNA CR haplotype for the coding region.
      • We found 28 different coding region haplotypes in 29 samples identical in the CR.
      • We therefore increased forensic power of discrimination from 0% to 99.8%.
      • We dissected the most common West Eurasian haplotype into numerous haplogroups.

      Abstract

      The analysis of mitochondrial (mt)DNA is a powerful tool in forensic genetics when nuclear markers fail to give results or maternal relatedness is investigated. The mtDNA control region (CR) contains highly condensed variation and is therefore routinely typed. Some samples exhibit an identical haplotype in this restricted range. Thus, they convey only weak evidence in forensic queries and limited phylogenetic information. However, a CR match does not imply that also the mtDNA coding regions are identical or samples belong to the same phylogenetic lineage. This is especially the case for the most frequent West Eurasian CR haplotype 263G 315.1C 16519C, which is observed in various clades within haplogroup H and occurs at a frequency of 3–4% in many European populations.
      In this study, we investigated the power of massively parallel complete mtGenome sequencing in 29 Italian samples displaying the most common West Eurasian CR haplotype – and found an unexpected high diversity. Twenty-eight different haplotypes falling into 19 described sub-clades of haplogroup H were revealed in the samples with identical CR sequences. This study demonstrates the benefit of complete mtGenome sequencing for forensic applications to enforce maximum discrimination, more comprehensive heteroplasmy detection, as well as highest phylogenetic resolution.

      Abbreviations:

      codR (coding region of the mtDNA), CR (control region of the mtDNA), EDNAP (European DNA Profiling Group), EMPOP (EDNAP mtDNA population database), MPS (massively parallel sequencing), MRCA (most recent common ancestor), mtDNA (mitochondrial DNA), np(s) (nucleotide position(s))

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Butler J.M.
        Fundamentals of Forensic DNA Typing.
        Elsevier Academic Press, San Diego and London2010
        • Eichmann C.
        • Parson W.
        ‘Mitominis’: multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.
        Int. J. Legal Med. 2008; 122: 385-388
        • Coble M.D.
        The identification of the Romanovs: can we (finally) put the controversies to rest?.
        Investig. Genet. 2011; 2: 20
        • Ziętkiewicz E.
        • Witt M.
        • Daca P.
        • Żebracka-Gala J.
        • Goniewicz M.
        • Jarząb B.
        • Witt M.
        Current genetic methodologies in the identification of disaster victims and in forensic analysis.
        J. Appl. Genet. 2012; 53: 41-60
        • Bauer C.M.
        • Bodner M.
        • Niederstätter H.
        • Niederwieser D.
        • Huber G.
        • Hatzer-Grubwieser P.
        • Holubar K.
        • Parson W.
        Molecular genetic investigations on Austria's patron saint Leopold III.
        Forensic Sci. Int. Genet. 2013; 7: 313-315
        • Just R.S.
        • Scheible M.K.
        • Fast S.A.
        • Sturk-Andreaggi K.
        • Higginbotham J.L.
        • Lyons E.A.
        • Bush J.M.
        • Peck M.A.
        • Ring J.D.
        • Diegoli T.M.
        • et al.
        Development of forensic-quality full mtGenome haplotypes: success rates with low template specimens.
        Forensic Sci. Int. Genet. 2014; 10: 73-79
        • Parson W.
        • Bandelt H.J.
        Extended guidelines for mtDNA typing of population data in forensic science.
        Forensic Sci. Int. Genet. 2007; 1: 13-19
        • Bandelt H.J.
        • Parson W.
        Consistent treatment of length variants in the human mtDNA control region: a reappraisal.
        Int. J. Legal Med. 2008; 122: 11-21
        • Salas A.
        • Bandelt H.J.
        • Macaulay V.
        • Richards M.B.
        Phylogeographic investigations: the role of trees in forensic genetics.
        Forensic Sci. Int. 2007; 168: 1-13
        • Irwin J.A.
        • Parson W.
        • Coble M.D.
        • Just R.S.
        MtGenome reference population databases and the future of forensic mtDNA analysis.
        Forensic Sci. Int. Genet. 2011; 5: 222-225
        • Sturk K.A.
        • Coble M.D.
        • Barritt S.M.
        • Parsons T.J.
        • Just R.S.
        The application of mtDNA SNPs to a forensic case.
        Forensic Sci. Int. Genet. Suppl. Ser. 2008; 1: 295-297
        • Just R.S.
        • Loreille O.M.
        • Molto J.E.
        • Merriwether D.A.
        • Woodward S.R.
        • Matheson C.
        • Creed J.
        • McGrath S.E.
        • Sturk-Andreaggi K.
        • Coble M.D.
        • et al.
        Titanic's unknown child: the critical role of the mitochondrial DNA coding region in a re-identification effort.
        Forensic Sci. Int. Genet. 2011; 5: 231-235
        • Lutz S.
        • Wittig H.
        • Weisser H.J.
        • Heizmann J.
        • Junge A.
        • Dimo-Simonin N.
        • Parson W.
        • Edelmann J.
        • Anslinger K.
        • Jung S.
        • et al.
        Is it possible to differentiate mtDNA by means of HVIII in samples that cannot be distinguished by sequencing the HVI and HVII regions?.
        Forensic Sci. Int. 2000; 113: 97-101
        • Coble M.D.
        • Just R.S.
        • O’Callaghan J.E.
        • Letmanyi I.H.
        • Peterson C.T.
        • Irwin J.A.
        • Parsons T.J.
        Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians.
        Int. J. Legal Med. 2004; 118: 137-146
        • van Oven M.
        • Kayser M.
        Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation.
        Hum. Mutat. 2009; 30: E386-E394
        • Tully G.
        • Bär W.
        • Brinkmann B.
        • Carracedo A.
        • Gill P.
        • Morling N.
        • Parson W.
        • Schneider P.
        Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles.
        Forensic Sci. Int. 2001; 124: 83-91
        • Scientific Working Group on DNA Analysis Methods (SWGDAM)
        Interpretation Guidelines for Mitochondrial DNA Analysis by Forensic DNA Testing Laboratories.
        2013
        • Malyarchuk B.A.
        • Grzybowski T.
        • Derenko M.V.
        • Czarny J.
        • Woźniak M.
        • Miścicka-Sliwka D.
        Mitochondrial DNA variability in Poles and Russians.
        Ann. Hum. Genet. 2002; 66: 261-283
        • Cardoso S.
        • Alfonso-Sánchez M.A.
        • Valverde L.
        • Sánchez D.
        • Zarrabeitia M.T.
        • Odriozola A.
        • Martínez-Jarreta B.
        • de Pancorbo M.M.
        Genetic uniqueness of the Waorani tribe from the Ecuadorian Amazon.
        Heredity (Edinb.). 2012; 108: 609-615
        • Achilli A.
        • Rengo C.
        • Magri C.
        • Battaglia V.
        • Olivieri A.
        • Scozzari R.
        • Cruciani F.
        • Zeviani M.
        • Briem E.
        • Carelli V.
        • et al.
        The molecular dissection of mtDNA haplogroup H confirms that the Franco-Cantabrian glacial refuge was a major source for the European gene pool.
        Am. J. Hum. Genet. 2004; 75: 910-918
        • Brandstätter A.
        • Zimmermann B.
        • Wagner J.
        • Göbel T.
        • Röck A.W.
        • Salas A.
        • Carracedo A.
        • Parson W.
        Timing and deciphering mitochondrial DNA macro-haplogroup R0 variability in Central Europe and Middle East.
        BMC Evol. Biol. 2008; 8: 191
        • Parson W.
        • Dür A.
        EMPOP – a forensic mtDNA database.
        Forensic Sci. Int. Genet. 2007; 1 (Available at: http://empop.org): 88-92
        • Loogväli E.L.
        • Roostalu U.
        • Malyarchuk B.A.
        • Derenko M.V.
        • Kivisild T.
        • Metspalu E.
        • Tambets K.
        • Reidla M.
        • Tolk H.V.
        • Parik J.
        • et al.
        Disuniting uniformity: a pied cladistic canvas of mtDNA haplogroup H in Eurasia.
        Mol. Biol. Evol. 2004; 21: 2012-2021
        • Brandstätter A.
        • Salas A.
        • Niederstätter H.
        • Gassner C.
        • Carracedo A.
        • Parson W.
        Dissection of mitochondrial superhaplogroup H using coding region SNPs.
        Electrophoresis. 2006; 27: 2541-2550
        • Roostalu U.
        • Kutuev I.
        • Loogväli E.L.
        • Metspalu E.
        • Tambets K.
        • Reidla M.
        • Khusnutdinova E.K.
        • Usanga E.
        • Kivisild T.
        • Villems R.
        Origin and expansion of haplogroup H, the dominant human mitochondrial DNA lineage in West Eurasia: the Near Eastern and Caucasian perspective.
        Mol. Biol. Evol. 2007; 24: 436-448
        • Álvarez-Iglesias V.
        • Mosquera-Miguel A.
        • Cerezo M.
        • Quintáns B.
        • Zarrabeitia M.T.
        • Cuscó I.
        • Lareu M.V.
        • García O.
        • Pérez-Jurado L.
        • Carracedo A.
        • et al.
        New population and phylogenetic features of the internal variation within mtDNA macrohaplogroup R0.
        PLoS ONE. 2009; 4: e5112
        • Behar D.M.
        • van Oven M.
        • Rosset S.
        • Metspalu M.
        • Loogväli E.L.
        • Silva N.M.
        • Kivisild T.
        • Torroni A.
        • Villems R.
        A “Copernican” reassessment of the human mitochondrial DNA tree from its root.
        Am. J. Hum. Genet. 2012; 90: 675-684
        • Andrews R.M.
        • Kubacka I.
        • Chinnery P.F.
        • Lightowlers R.N.
        • Turnbull D.M.
        • Howell N.
        Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA.
        Nat. Genet. 1999; 23: 147
        • Köhnemann S.
        • Hohoff C.
        • Pfeiffer H.
        An economical mtDNA SNP assay detecting different mitochondrial haplogroups in identical HVR 1 samples of Caucasian ancestry.
        Mitochondrion. 2009; 9: 370-375
        • Parsons T.J.
        • Coble M.D.
        Increasing the forensic discrimination of mitochondrial DNA testing through analysis of the entire mitochondrial DNA genome.
        Croat. Med. J. 2001; 42: 304-309
        • Fendt L.
        • Zimmermann B.
        • Daniaux M.
        • Parson W.
        Sequencing strategy for the whole mitochondrial genome resulting in high quality sequences.
        BMC Genomics. 2009; 10: 139
        • Lyons E.A.
        • Scheible M.K.
        • Sturk-Andreaggi K.
        • Irwin J.A.
        • Just R.S.
        A high-throughput Sanger strategy for human mitochondrial genome sequencing.
        BMC Genomics. 2013; 14: 881
        • Andréasson H.
        • Nilsson M.
        • Styrman H.
        • Pettersson U.
        • Allen M.
        Forensic mitochondrial coding region analysis for increased discrimination using pyrosequencing technology.
        Forensic Sci. Int. Genet. 2007; 1: 35-43
        • Zimmermann B.
        • Bodner M.
        • Amory S.
        • Fendt L.
        • Röck A.
        • Horst D.
        • Horst B.
        • Sanguansermsri T.
        • Parson W.
        • Brandstätter A.
        Forensic and phylogeographic characterization of mtDNA lineages from northern Thailand (Chiang Mai).
        Int. J. Legal Med. 2009; 123: 495-501
        • Mikkelsen M.
        • Rockenbauer E.
        • Sørensen E.
        • Rasmussen M.
        • Børsting C.
        • Morling N.
        A mitochondrial DNA SNP multiplex assigning Caucasians into 36 haplo- and subhaplogroups.
        Forensic Sci. Int. Genet. Suppl. Ser. 2008; 1: 287-289
        • Coutinho A.
        • Valverde G.
        • Fehren-Schmitz L.
        • Cooper A.
        • Barreto Romero M.I.
        • Espinoza I.F.
        • Llamas B.
        • Haak W.
        AmericaPlex26: a SNaPshot multiplex system for genotyping the main human mitochondrial founder lineages of the Americas.
        PLOS ONE. 2014; 9: e93292
        • Krjutškov K.
        • Viltrop T.
        • Palta P.
        • Metspalu E.
        • Tamm E.
        • Suvi S.
        • Sak K.
        • Merilo A.
        • Sork H.
        • Teek R.
        • et al.
        Evaluation of the 124-plex SNP typing microarray for forensic testing.
        Forensic Sci. Int. Genet. 2009; 4: 43-48
        • van Oven M.
        • Vermeulen M.
        • Kayser M.
        Multiplex genotyping system for efficient inference of matrilineal genetic ancestry with continental resolution.
        Investig. Genet. 2011; 23: 6
        • Chaitanya L.
        • van Oven M.
        • Weiler N.
        • Harteveld J.
        • Wirken L.
        • Sijen T.
        • de Knijff P.
        • Kayser M.
        Developmental validation of mitochondrial DNA genotyping assays for adept matrilineal inference of biogeographic ancestry at a continental level.
        Forensic Sci. Int. Genet. 2014; 11: 39-51
        • Pereira L.
        • Richards M.
        • Goios A.
        • Alonso A.
        • Albarrán C.
        • Garcia O.
        • Behar D.M.
        • Gölge M.
        • Hatina J.
        • Al-Gazali L.
        • et al.
        Evaluating the forensic informativeness of mtDNA haplogroup H sub-typing on a Eurasian scale.
        Forensic Sci. Int. 2006; 159: 43-50
        • Grignani P.
        • Peloso G.
        • Achilli A.
        • Turchi C.
        • Tagliabracci A.
        • Alù M.
        • Beduschi G.
        • Ricci U.
        • Giunti L.
        • Robino C.
        • et al.
        Subtyping mtDNA haplogroup H by SNaPshot minisequencing and its application in forensic individual identification.
        Int. J. Legal Med. 2006; 120: 151-156
        • Nilsson M.
        • Andréasson-Jansson H.
        • Ingman M.
        • Allen M.
        Evaluation of mitochondrial DNA coding region assays for increased discrimination in forensic analysis.
        Forensic Sci. Int. Genet. 2008; 2: 1-8
        • Mosquera-Miguel A.
        • Álvarez-Iglesias V.
        • Cerezo M.
        • Lareu M.V.
        • Carracedo A.
        • Salas A.
        Testing the performance of mtSNP minisequencing in forensic samples.
        Forensic Sci. Int. Genet. 2009; 3: 261-264
        • Boattini A.
        • Martinez-Cruz B.
        • Sarno S.
        • Harmant C.
        • Useli A.
        • Sanz P.
        • Yang-Yao D.
        • Manry J.
        • Ciani G.
        • Luiselli D.
        • et al.
        Uniparental markers in Italy reveal a sex-biased genetic structure and different historical strata.
        PLOS ONE. 2013; 8: e65441
        • Bandelt H.J.
        • Salas A.
        Current next generation sequencing technology may not meet forensic standards.
        Forensic Sci. Int. Genet. 2012; 6: 143-145
        • Parson W.
        • Strobl C.
        • Huber G.
        • Zimmermann B.
        • Gomes S.M.
        • Souto L.
        • Fendt L.
        • Delport R.
        • Langit R.
        • Wootton S.
        • et al.
        Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM).
        Forensic Sci. Int. Genet. 2013; 7: 543-549
        • Zimmermann B.
        • Röck A.
        • Huber G.
        • Krämer T.
        • Schneider P.M.
        • Parson W.
        Application of a west Eurasian-specific filter for quasi-median network analysis: sharpening the blade for mtDNA error detection.
        Forensic Sci. Int. Genet. 2011; 5: 133-137
        • Just R.S.
        • Fast S.A.
        • Scheible M.K.
        • Sturk-Andreaggi K.
        • Röck A.W.
        • Bush J.M.
        • Higginbotham J.L.
        • Peck M.A.
        • Ring J.D.
        • Huber G.E.
        • et al.
        Full mtGenome referencedata: development and characterization of 588 forensic-quality haplotypesrepresenting three U.S. populations.
        Forensic Sci. Int. Genet. 2014; https://doi.org/10.1016/j.fsigen.2014.09.021
        • King J.L.
        • LaRue B.L.
        • Novroski N.M.
        • Stoljarova M.
        • Seo S.B.
        • Zeng X.
        • Warshauer D.H.
        • Davis C.P.
        • Parson W.
        • Sajantila A.
        • et al.
        High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq.
        Forensic Sci. Int. Genet. 2014; 12C: 128-135
        • Miller S.A.
        • Dykes D.D.
        • Polesky H.F.
        A simple salting out procedure for extracting DNA from human nucleated cells.
        Nucleic Acids Res. 1988; 16: 1215
        • Niederstätter H.
        • Köchl S.
        • Grubwieser P.
        • Pavlic M.
        • Steinlechner M.
        • Parson W.
        A modular real-time PCR concept for determining the quantity and quality of human nuclear and mitochondrial DNA.
        Forensic Sci. Int. Genet. 2007; 1: 29-34
        • Röck A.W.
        • Dür A.
        • van Oven M.
        • Parson W.
        Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA).
        Forensic Sci. Int. Genet. 2013; 7: 601-609
        • Stoneking M.
        • Hedgecock D.
        • Higuchi R.G.
        • Vigilant L.
        • Erlich H.A.
        Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes.
        Am. J. Hum. Genet. 1991; 48: 370-382
        • Fraumene C.
        • Belle E.M.
        • Castrì L.
        • Sanna S.
        • Mancosu G.
        • Cosso M.
        • Marras F.
        • Barbujani G.
        • Pirastu M.
        • Angius A.
        High resolution analysis and phylogenetic network construction using complete mtDNA sequences in Sardinian genetic isolates.
        Mol. Biol. Evol. 2006; 23: 2101-2111
        • Herrnstadt C.
        • Elson J.L.
        • Fahy E.
        • Preston G.
        • Turnbull D.M.
        • Anderson C.
        • Ghosh S.S.
        • Olefsky J.M.
        • Beal M.F.
        • Davis R.E.
        • et al.
        Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups.
        Am. J. Hum. Genet. 2002; 70: 1152-1171
        • Raule N.
        • Sevini F.
        • Li S.
        • Barbieri A.
        • Tallaro F.
        • Lomartire L.
        • Vianello D.
        • Montesanto A.
        • Moilanen J.S.
        • Bezrukov V.
        • et al.
        The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific.
        Aging Cell. 2014; 13: 401-407
        • Gasparre G.
        • Porcelli A.M.
        • Bonora E.
        • Pennisi L.F.
        • Toller M.
        • Iommarini L.
        • Ghelli A.
        • Moretti M.
        • Betts C.M.
        • Martinelli G.N.
        • et al.
        Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors.
        Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 9001-9006
        • Bodner M.
        • Irwin J.A.
        • Coble M.D.
        • Parson W.
        Inspecting close maternal relatedness: towards better mtDNA population samples in forensic databases.
        Forensic Sci. Int. Genet. 2011; 5: 138-141
        • Brisighelli F.
        • Álvarez-Iglesias V.
        • Fondevila M.
        • Blanco-Verea A.
        • Carracedo A.
        • Pascali V.L.
        • Capelli C.
        • Salas A.
        Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage.
        PLOS ONE. 2012; 7: e50794
        • Tagliabracci A.
        • Turchi C.
        • Buscemi L.
        • Sassaroli C.
        Polymorphism of the mitochondrial DNA control region in Italians.
        Int. J. Legal Med. 2001; 114: 224-228
        • Turchi C.
        • Buscemi L.
        • Previderè C.
        • Grignani P.
        • Brandstätter A.
        • Achilli A.
        • Parson W.
        • Tagliabracci A.
        • Ge.F.I. Group
        Italian mitochondrial DNA database: results of a collaborative exercise and proficiency testing.
        Int. J. Legal Med. 2008; 122: 199-204
        • Brandstätter A.
        • Parsons T.J.
        • Parson W.
        Rapid screening of mtDNA coding region SNPs for the identification of west European Caucasian haplogroups.
        Int. J. Legal Med. 2003; 117: 291-298
        • Köhnemann S.
        • Pfeiffer H.
        Application of mtDNA SNP analysis in forensic casework.
        Forensic Sci. Int. Genet. 2011; 5: 216-221