Advertisement
Research Article| Volume 14, P161-167, January 2015

Download started.

Ok

Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science

Published:October 13, 2014DOI:https://doi.org/10.1016/j.fsigen.2014.10.002

      Highlights

      • We optimized an assay based on pyrosequencing of 7 CpG sites in the ELOVL2 gene.
      • The linear regression model based on ELOVL2 enabled age prediction with R2 = 0.859.
      • Age prediction based on ELOVL2 is possible in bloodstains.
      • ELOVL2 provides a very good source of information about human chronological age.

      Abstract

      Age estimation in forensic investigations may complement the prediction of externally visible characteristics and the inference of biogeographical ancestry, thus allowing a better description of an unknown individual. Multiple CpG sites that show linear correlation between age and degree of DNA methylation have been identified in the human genome, providing a selection of candidates for age prediction. In this study, we optimized an assay based on bisulfite conversion and pyrosequencing of 7 CpG sites located in the ELOVL2 gene. Examination of 303 blood samples collected from individuals aged 2–75 years allowed selection of the most informative site, explaining 83% of variation in age. The final linear regression model included two CpG sites in ELOVL2 and enabled age prediction with R2 = 0.859, prediction error = 6.85 and mean absolute deviation MAD = 5.03. Examination of a testing set of 124 blood samples (MAD = 5.75) showed that 68.5% of samples were correctly predicted, assuming that chronological and predicted ages matched ±7 years. It was found that the ELOVL2 methylation status in bloodstains had not changed significantly after 4 weeks of storage in room temperature conditions. Analysis of 45 bloodstains deposited on tissue paper after 5, 10 and 15 years of storage in room conditions indicated that although a gradual decrease of positive PCR results was observed, the general age prediction success rate remained similar and equaled 60–78%. The obtained results show that the ELOVL2 locus provides a very good source of information about human chronological age based on analysis of blood, including bloodstains, and it may constitute a powerful and reliable predictor in future forensic age estimation models.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Phillips C.
        • Salas A.
        • Sánchez J.J.
        • Fondevila M.
        • Gómez-Tato A.
        • Alvarez-Dios J.
        • Calaza M.
        • de Cal M.C.
        • Ballard D.
        • Lareu M.V.
        • Carracedo A.
        • SNPforID Consortium
        Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs.
        Forensic Sci. Int. Genet. 2007; 1: 273-280
        • Kayser M.
        • Schneider P.M.
        DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations.
        Forensic Sci. Int. Genet. 2009; 3: 154-161
        • Kayser M.
        • de Knijff P.
        Improving human forensics through advances in genetics, genomics and molecular biology.
        Nat. Rev. Genet. 2011; 12: 179-192
        • Meissner C.
        • Ritz-Timme S.
        Molecular pathology and age estimation.
        Forensic Sci. Int. 2010; 203: 34-43
        • Vidaki 1., A.
        • Daniel B.
        • Court D.S.
        Forensic DNA methylation profiling – potential opportunities and challenges.
        Forensic Sci. Int. Genet. 2013; 7: 499-507
        • Dobberstein R.C.
        • Huppertz J.
        • von Wurmb-Schwark N.
        • Ritz-Timme S.
        Degradation of biomolecules in artificially and naturally aged teeth: implications for age estimation based on aspartic acid racemization and DNA analysis.
        Forensic Sci. Int. 2008; 179: 181-191
        • Sato Y.
        • Kondo T.
        • Ohshima T.
        Estimation of age of human cadavers by immunohistochemical assessment of advanced glycation end products in the hippocampus.
        Histopathology. 2001; 38: 217-220
        • Tsuji A.
        • Ishiko A.
        • Takasaki T.
        • Ikeda N.
        Estimating age of humans based on telomere shortening.
        Forensic Sci. Int. 2002; 126: 197-199
        • Meissner C.
        • von Wurmb N.
        • Oehmichen M.
        Detection of the age-dependent 4977 bp deletion of mitochondrial DNA. A pilot study.
        Int. J. Legal Med. 1997; 110: 288-291
        • Douek D.C.
        • McFarland R.D.
        • Keiser P.H.
        • Gage E.A.
        • Massey J.M.
        • Haynes B.F.
        • Polis M.A.
        • Haase A.T.
        • Feinberg M.B.
        • Sullivan J.L.
        • et al.
        Changes in thymic function with age and during the treatment of HIV infection.
        Nature. 1998; 396: 690-695
        • Zubakov D.
        • Liu F.
        • van Zelm M.C.
        • Vermeulen J.
        • Oostra B.A.
        • van Duijn C.M.
        • Driessen G.J.
        • van Dongen J.J.
        • Kayser M.
        • Langerak A.W.
        Estimating human age from T-cell DNA rearrangements.
        Curr. Biol. 2010; 20: R970-R971
        • Fraga M.F.
        • Esteller M.
        Epigenetics and aging: the targets and the marks.
        Trends Genet. 2007; 23: 413-418
        • Christensen B.C.
        • Houseman E.A.
        • Marsit C.J.
        • Zheng S.
        • Wrensch M.R.
        • Wiemels J.L.
        • Nelson H.H.
        • Karagas M.R.
        • Padbury J.F.
        • Bueno R.
        • Sugarbaker D.J.
        • Yeh R.F.
        • Wiencke J.K.
        • Kelsey K.T.
        Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context.
        PLoS Genet. 2009; : e1000602
        • Bocklandt S.
        • Lin W.
        • Sehl M.E.
        • Sanchez F.J.
        • Sinsheimer J.S.
        • Horvath S.
        Vilain epigenetic predictor of age.
        PLoS ONE. 2011; 6: e14821
        • Garagnani P.
        • Bacalini M.G.
        • Pirazzini C.
        • Gori D.
        • Giuliani C.
        • Mari D.
        • Di Blasio A.M.
        • Gentilini D.
        • Vitale G.
        • Collino S.
        • Rezzi S.
        • Castellani G.
        • Capri M.
        • Salvioli S.
        • Franceschi C.
        Methylation of ELOVL2 gene as a new epigenetic marker of age.
        Aging Cell. 2012; 11: 1132-1134
        • Hannum G.
        • Guinney J.
        • Zhao L.
        • Zhang L.
        • Hughes G.
        • Sadda S.
        • Klotzle B.
        • Bibikova M.
        • Fan J.B.
        • Gao Y.
        • Deconde R.
        • Chen M.
        • Rajapakse I.
        • Friend S.
        • Ideker T.
        • Zhang K.
        Genome-wide methylation profiles reveal quantitative views of human aging rates.
        Mol. Cell. 2013; 49: 359-376
        • Johansson A.
        • Enroth S.
        • Gyllensten U.
        Continuous aging of the human DNA methylome throughout the human lifespan.
        PLoS ONE. 2013; 8: e67378
        • Florath I.
        • Butterbach K.
        • Müller H.
        • Bewerunge-Hudler M.
        • Brenner H.
        Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites.
        Hum. Mol. Genet. 2014; 23: 1186-1201
        • Weidner C.I.
        • Lin Q.
        • Koch C.M.
        • Eisele L.
        • Beier F.
        • Ziegler P.
        • Bauerschlag D.O.
        • Jöckel K.H.
        • Erbel R.
        • Mühleisen T.W.
        • Zenke M.
        • Brümmendorf T.H.
        • Wagner W.
        Aging of blood can be tracked by DNA methylation changes at just three CpG sites.
        Genome Biol. 2014; 15: R24
        • Leonard 1., A.E.
        • Kelder B.
        • Bobik E.G.
        • Chuang L.T.
        • Lewis C.J.
        • Kopchick J.J.
        • Mukerji P.
        • Huang Y.S.
        Identification and expression of mammalian long-chain PUFA elongation enzymes.
        Lipids. 2002; 37: 733-740
        • Jakobsson 1., A.
        • Westerberg R.
        • Jacobsson A.
        Fatty acid elongases in mammals: their regulation and roles in metabolism.
        Prog. Lipid Res. 2006; 45: 237-249
        • Lemaitre 1., R.N.
        • Tanaka T.
        • Tang W.
        • Manichaikul A.
        • Foy M.
        • Kabagambe E.K.
        • Nettleton J.A.
        • King I.B.
        • Weng L.C.
        • Bhattacharya S.
        • Bandinelli S.
        • Bis J.C.
        • Rich S.S.
        • Jacobs Jr., D.R.
        • Cherubini A.
        • McKnight B.
        • Liang S.
        • Gu X.
        • Rice K.
        • Laurie C.C.
        • Lumley T.
        • Browning B.L.
        • Psaty B.M.
        • Chen Y.D.
        • Friedlander Y.
        • Djousse L.
        • Wu J.H.
        • Siscovick D.S.
        • Uitterlinden A.G.
        • Arnett D.K.
        • Ferrucci L.
        • Fornage M.
        • Tsai M.Y.
        • Mozaffarian D.
        • Steffen L.M.
        Genetic loci associated with plasma phospholipid n−3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium.
        PLoS Genet. 2011; 7: e1002193
        • Suhre 1., K.
        • Shin S.Y.
        • Petersen A.K.
        • Mohney R.P.
        • Meredith D.
        • Wägele B.
        • Altmaier E.
        • CARDIoGRAM
        • Deloukas P.
        • Erdmann J.
        • Grundberg E.
        • Hammond C.J.
        • de Angelis M.H.
        • Kastenmüller G.
        • Köttgen A.
        • Kronenberg F.
        • Mangino M.
        • Meisinger C.
        • Meitinger T.
        • Mewes H.W.
        • Milburn M.V.
        • Prehn C.
        • Raffler J.
        • Ried J.S.
        • Römisch-Margl W.
        • Samani N.J.
        • Small K.S.
        • Wichmann H.E.
        • Zhai G.
        • Illig T.
        • Spector T.D.
        • Adamski J.
        • Soranzo N.
        • Gieger C.
        Human metabolic individuality in biomedical and pharmaceutical research.
        Nature. 2011; 477: 54-60
        • Demirkan 1., A.
        • van Duijn C.M.
        • Ugocsai P.
        • Isaacs A.
        • Pramstaller P.P.
        • Liebisch G.
        • Wilson J.F.
        • Johansson Å.
        • Rudan I.
        • Aulchenko Y.S.
        • Kirichenko A.V.
        • Janssens A.C.
        • Jansen R.C.
        • Gnewuch C.
        • Domingues F.S.
        • Pattaro C.
        • Wild S.H.
        • Jonasson I.
        • Polasek O.
        • Zorkoltseva I.V.
        • Hofman A.
        • Karssen L.C.
        • Struchalin M.
        • Floyd J.
        • Igl W.
        • Biloglav Z.
        • Broer L.
        • Pfeufer A.
        • Pichler I.
        • Campbell S.
        • Zaboli G.
        • Kolcic I.
        • Rivadeneira F.
        • Huffman J.
        • Hastie N.D.
        • Uitterlinden A.
        • Franke L.
        • Franklin C.S.
        • Vitart V.
        • DIAGRAM Consortium
        • Nelson C.P.
        • Preuss M.
        • CARDIoGRAM Consortium
        • Bis J.C.
        • O’Donnell C.J.
        • Franceschini N.
        • CHARGE Consortium
        • Witteman J.C.
        • Axenovich T.
        • Oostra B.A.
        • Meitinger T.
        • Hicks A.A.
        • Hayward C.
        • Wright A.F.
        • Gyllensten U.
        • Campbell H.
        • Schmitz G.
        • EUROSPAN Consortium
        Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations.
        PLoS Genet. 2012; 8: e1002490
        • Inouye 1., M.
        • Ripatti S.
        • Kettunen J.
        • Lyytikäinen L.P.
        • Oksala N.
        • Laurila P.P.
        • Kangas A.J.
        • Soininen P.
        • Savolainen M.J.
        • Viikari J.
        • Kähönen M.
        • Perola M.
        • Salomaa V.
        • Raitakari O.
        • Lehtimäki T.
        • Taskinen M.R.
        • Järvelin M.R.
        • Ala-Korpela M.
        • Palotie A.
        • de Bakker P.I.
        Novel loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis.
        PLoS Genet. 2012; 8: e1002907
        • Kim E.J.
        • Kim M.K.
        • Jin X.J.
        • Oh J.H.
        • Kim J.E.
        • Chung J.H.
        Skin aging and photoaging alter fatty acids composition, including 11,14,17-eicosatrienoic acid, in the epidermis of human skin.
        J. Korean Med. Sci. 2010; 25: 980-983
        • Tost J.
        • Gut I.G.
        DNA methylation analysis by pyrosequencing.
        Nat. Protoc. 2007; 2: 2265-2275
        • Vilahur N.
        • Baccarelli A.A.
        • Bustamante M.
        • Agramunt S.
        • Byun H.M.
        • Fernandez M.F.
        • Sunyer J.
        • Estivill X.
        Storage conditions and stability of global DNA methylation in placental tissue.
        Epigenomics. 2013; 5: 341-348
        • LaRue B.L.
        • King J.L.
        • Budowle B.
        A validation study of the Nucleix DSI-Semen kit – a methylation-based assay for semen identification.
        Int. J. Legal Med. 2013; 127: 299-308
        • An J.H.
        • Choi A.
        • Shin K.J.
        • Yang W.I.
        • Lee H.Y.
        DNA methylation-specific multiplex assays for body fluid identification.
        Int. J. Legal Med. 2013; 127: 35-43
        • Antunes P.J.
        • Madi T.
        • Balamurugan K.
        • Bombardi R.
        • Duncan G.
        • McCord B.
        DNA methylation markers as a powerful technique to discriminate body fluids present in crime scenes.
        in: Proceedings of the 24th International Symposium on Human Identification2014
        • Koch C.M.
        • Wagner W.
        Epigenetic-aging-signature to determine age in different tissues.
        Aging. 2011; 3: 1018-1027
        • Choi A.
        • Shin K.J.
        • Yang W.I.
        • Lee H.Y.
        Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA.
        Int. J. Legal Med. 2014; 128: 33-41
        • Teschendorf A.E.
        • Menon U.
        • Gentry-Maharaj A.
        • Ramus S.J.
        • Weisenberger D.J.
        • Shen H.
        • Campan M.
        • Noushmehr H.
        • Bell S.G.
        • Maxwell A.P.
        • Savage D.A.
        • Mueller-Holzner E.
        • Marth C.
        • et al.
        Age dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer.
        Genome Res. 2010; 20: 440-446