Advertisement
Short communication| Volume 14, P194-200, January 2015

Download started.

Ok

FACS separation of non-compromised forensically relevant biological mixtures

  • Timothy J. Verdon
    Correspondence
    Corresponding author at: La Trobe University, Department of Genetics, La Trobe Institute for Molecular Sciences, Bundoora 3086, VIC, Australia. Tel.: +61 3 9479 3088.
    Affiliations
    Office of the Chief Forensic Scientist, Victoria Police Forensic Services Centre, 31 Forensic Drive, Macleod 3085, VIC, Australia

    Department of Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne 3086, VIC, Australia
    Search for articles by this author
  • R. John Mitchell
    Affiliations
    Department of Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne 3086, VIC, Australia
    Search for articles by this author
  • Weisan Chen
    Affiliations
    Department of Biochemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne 3086, VIC, Australia
    Search for articles by this author
  • Kun Xiao
    Affiliations
    Department of Biochemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne 3086, VIC, Australia
    Search for articles by this author
  • Roland A.H. van Oorschot
    Affiliations
    Office of the Chief Forensic Scientist, Victoria Police Forensic Services Centre, 31 Forensic Drive, Macleod 3085, VIC, Australia
    Search for articles by this author
Published:October 31, 2014DOI:https://doi.org/10.1016/j.fsigen.2014.10.019

      Highlights

      • Fluorescence-assisted cell sorting (FACS) of mixedfresh blood/saliva was trialled.
      • Previously undetectable alleles in various ratios of mixtures detected after sorting.
      • Probative values strengthened considerably after FACS sorting.
      • Use of FACS before extraction may improve probative value of forensic analysis.
      • Research on compromised samples required before FACS adopted by forensic labs.

      Abstract

      Although focusing attention on the statistical analysis of complex mixture profiles is important, the forensic science community will also benefit from directing research to improving the reduction of the incidence of mixtures before DNA extraction. This preliminary study analysed the use of fluorescence assisted cell sorting (FACS) for separation of cellular mixtures before DNA extraction, specifically mixtures of relatively fresh blood and saliva from two donors, prepared in 14 different mixture ratios. Improvements in the number of detectable alleles from the targeted cell type and overall profile quality were seen when compared to the results from unseparated samples. STRmix calculations revealed increases in likelihood ratios after separation, demonstrating the potential for higher probative values to be obtained from forensically relevant mixtures after subjecting them to FACS than from unsorted samples.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • SWGDAM
        4.1 Interpretation Guidelines for Autosomal STR Typing by Forensic DNA Testing Laboratories.
        SWGDAM, 2010 (Available at)
        • Taylor D.
        • Bright J.-A.
        • Buckleton J.
        The interpretation of single source and mixed DNA profiles.
        Forensic Sci. Int. Genet. 2013; 7: 516-528
        • R v Fuller
        SADC 150.
        R v Fuller, 2013
        • Ballantyne J.
        • Hanson E.K.
        • Perlin M.W.
        DNA mixture genotyping by probabilistic computer interpretation of binomially-sampled laser captured cell populations: combining quantitative data for greater identification information.
        Sci. Justice. 2013; 53: 103-114
        • Perlin M.
        • Belrose J.
        • Duceman B.
        New York State TrueAllele® Casework validation study.
        J. Forensic Sci. 2013; 58: 1458-1466
        • Perlin M.W.
        • Legler M.M.
        • Spencer C.E.
        • Smith J.L.
        • Allan W.P.
        • Belrose J.L.
        • et al.
        Validating TrueAllele® DNA mixture interpretation.
        J. Forensic Sci. 2011; 56: 1430-1447
        • Gill P.
        • Brenner C.H.
        • Buckleton J.S.
        • Carracedo A.
        • Krawczak M.
        • Mayr W.R.
        • et al.
        DNA commission of the International Society of Forensic Genetics: recommendations on the interpretation of mixtures.
        Forensic Sci. Int. 2006; 160: 90-101
        • Morling N.
        • Bastisch I.
        • Gill P.
        • Schneider P.M.
        Interpretation of DNA mixtures—European consensus on principles.
        Forensic Sci. Int. Genet. 2007; 1: 291-292
        • Gill P.
        • Curran J.
        • Neumann C.
        • Kirkham A.
        • Clayton T.
        • Whitaker J.
        • et al.
        Interpretation of complex DNA profiles using empirical models and a method to measure their robustness.
        Forensic Sci. Int. Genet. 2008; 2: 91-103
        • Kelly H.
        • Bright J.A.
        • Curran J.
        • Buckleton J.
        The interpretation of low level DNA mixtures.
        Forensic Sci. Int. Genet. 2011; : 191-197
        • Benschop C.C.G.
        • Haned H.
        • de Blaeij T.J.P.
        • Meulenbroek A.J.
        • Sijen T.
        Assessment of mock cases involving complex low template DNA mixtures: a descriptive study.
        Forensic Sci. Int. Genet. 2012; 6: 697-707
        • Vandewoestyne M.
        • Deforce D.
        Laser capture microdissection for forensic DNA analysis.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e117-e118
        • Yano S.
        • Honda K.
        • Kaminiwa J.
        • Nishi T.
        • Iwabuchi Y.
        • Sugano Y.
        • et al.
        DNA extraction for short tandem repeat typing from mixed samples using anti-human leukocyte CD45 and ABO blood group antibodies.
        Forensic Sci. Int. Genet. 2014; 10: 17-22
        • Schoell W.M.J.
        • Klintschar M.
        • Mirhashemi R.
        • Pertl B.
        Separation of sperm and vaginal cells with flow cytometry for DNA typing after sexual assault.
        Obstet. Gynecol. 1999; 94: 623-627
        • Schoell W.M.J.
        • Klintschar M.
        • Mirhashemi R.
        • Strunk D.
        • Giuliani A.
        • Bogensberger G.
        • et al.
        Separation of sperm and vaginal cells based on ploidy, MHC class I–, CD45–, and cytokeratin expression for enhancement of DNA typing after sexual assault.
        Cytometry. 1999; 36: 319-323
        • Di Nunno N.
        • Melato M.
        • Vimercati A.
        • Di Nunno C.
        • Costantinides F.
        • Vecchiotti C.
        • et al.
        DNA identification of sperm cells collected and sorted by flow cytometry.
        Am. J. Forensic Med. Pathol. 2003; 24: 254-270
        • McMichael A.J.
        Leucocyte Typing III: White Cell Differentiation Antigens.
        Oxford University Press, London1987
        • Mason D.
        Leucocyte Typing VII: White Cell Differentiation Antigens: Proceedings of the Seventh International Workshop and Conference Held in Harrogate, United Kingdom.
        Oxford University Press, London2002
        • Perfetto S.P.
        • Chattopadhyay P.K.
        • Roederer M.
        Seventeen-colour flow cytometry: unravelling the immune system.
        Nat. Rev. Immunol. 2004; 4: 648-655
        • De Rosa S.C.
        • Brenchley J.M.
        • Roederer M.
        Beyond six colors: a new era in flow cytometry.
        Nat. Med. 2003; 9: 112-117
        • Herzenberg L.A.
        • Parks D.
        • Sahaf B.
        • Perez O.
        • Roederer M.
        • Herzenberg L.A.
        The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford.
        Clin. Chem. 2002; 48: 1819-1827
        • Schantz S.P.
        • Savage H.E.
        • Sacks P.
        • Alfano R.R.
        Native cellular fluorescence and its application to cancer prevention.
        Environ. Health Persp. 1997; 105: 941
        • Kolli V.R.
        • Shaha A.R.
        • Savage H.E.
        • Sacks P.G.
        • Casale M.A.
        • Schantz S.P.
        Native cellular fluorescence can identify changes in epithelial thickness in-vivo in the upper aerodigestive tract.
        Am. J. Surg. 1995; 170: 495-498
        • Sacks P.G.
        • Savage H.E.
        • Levine J.
        • Kolli V.R.
        • Alfano R.R.
        • Schantz S.P.
        Native cellular fluorescence identifies terminal squamous differentiation of normal oral epithelial cells in culture: a potential chemoprevention biomarker.
        Cancer Lett. 1996; 104: 171-181
        • Perez O.
        • Krutzik P.
        • Nolan G.
        Flow cytometric analysis of kinase signaling cascades.
        in: Hawley T. Hawley R. Flow Cytometry Protocols. Humana Press, Totowa, NJ, USA2004: 67-94
        • Wykes M.
        • MacDonald K.P.A.
        • Tran M.
        • Quin R.J.
        • Xing P.X.
        • Gendler S.J.
        • et al.
        MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells.
        J. Leukocyte Biol. 2002; 72: 692-701
        • Lee H.C.
        • Ladd C.
        Preservation and collection of biological evidence.
        Croat. Med. J. 2001; 42: 225-228
        • Rindom Schiött C.
        • Löe H.
        The origin and variation in number of leukocytes in the human saliva.
        J. Periodon. Res. 1970; 5: 36-41
        • Im M.
        • Chae H.
        • Kim T.
        • Park H.-H.
        • Lim J.
        • Oh E.-J.
        • Kim Y.
        • Park Y.-J.
        • Han K.
        Comparative quantitative analysis of cluster of differentiation 45 antigen expression on lymphocyte subsets.
        Korean J. Lab. Med. 2011; 31: 148-153
        • Hori Y.
        • Sugiyama H.
        • Soma T.
        • Nishida K.
        Expression of membrane-associated mucins in cultivated human oral mucosal epithelial cells.
        Cornea. 2007; 26: S65-S69
        • Kita T.
        • Yamaguchi H.
        • Yokoyama M.
        • Tanaka T.
        • Tanaka N.
        Morphological study of fragmented DNA on touched objects.
        Forensic Sci. Int. Genet. 2008; 3: 32-36
        • Quinones I.
        • Daniel B.
        Cell free DNA as a component of forensic evidence recovered from touched surfaces.
        Forensic Sci. Int. Genet. 2012; 6: 26-30