Advertisement
Research Article| Volume 16, P121-131, May 2015

Investigating a common approach to DNA profile interpretation using probabilistic software

Published:December 26, 2014DOI:https://doi.org/10.1016/j.fsigen.2014.12.009

      Abstract

      Recently there has been a drive for standardisation of DNA profile interpretation within and between different forensic laboratories. The continuous interpretation software STRmix⢢ has been adopted for use by laboratories in Australia and New Zealand for profile interpretation. Within this paper we examine the concordance in profile interpretation of three crime samples by twenty different analysts across twelve different international laboratories using STRmix⢢. The three profiles selected for this study exhibited a range of template and complexity. The use of probabilistic software has compelled a level of concordance between different analysts however there remain differences within profile interpretation, particularly with the objective assignment of the number of contributors to profiles.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gill P.
        • Gusmão L.
        • Haned H.
        • Mayr W.R.
        • Morling N.
        • Parson W.
        • et al.
        DNA commission of the International Society of Forensic Genetics: recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods.
        Forensic Sci. Int. Genet. 2012; 6: 679-688
        • Bille T.
        • Bright J.-A.
        • Buckleton J.
        Application of random match probability calculations to mixed STR profiles.
        J. Forensic Sci. 2013; 58: 474-485
        • Gill P.
        • Brenner C.H.
        • Buckleton J.S.
        • Carracedo A.
        • Krawczak M.
        • Mayr W.R.
        • et al.
        DNA commission of the International Society of Forensic Genetics: recommendations on the interpretation of mixtures.
        Forensic Sci. Int. 2006; 160: 90-101
        • Clayton T.M.
        • Buckleton J.S.
        Mixtures, in Forensic DNA Evidence Interpretation.
        CRC Press, Boca Raton2004: 217-274
        • Clayton T.
        • Whitaker J.P.
        • Sparkes R.L.
        • Gill P.
        Analysis and interpretation of mixed forensic stains using DNA STR profiling.
        Forensic Sci. Int. 1998; 91: 55-70
        • Gill P.
        • Sparkes R.L.
        • Pinchin R.
        • Clayton T.
        • Whitaker J.P.
        • Buckleton J.S.
        Interpreting simple STR mixtures using allelic peak areas.
        Forensic Sci. Int. 1998; 91: 41-53
        • Carracedo A.
        • Schneider P.M.
        • Butler J.
        • Prinz M.
        Focus issue•analysis and biostatistical interpretation of complex and low template DNA samples.
        Forensic Sci. Int. Genet. 2012; 6: 677-678
        • Buckleton J.
        • Triggs C.M.
        Is the 2p rule always conservative?.
        Forensic Sci. Int. 2006; 159: 206-209
        • Buckleton J.S.
        • Triggs C.M.
        • Walsh S.J.
        Forensic DNA Evidence Interpretation.
        CRC Press, Boca Raton, Florida2004
        • Haned H.
        Forensim: an open-source initiative for the evaluation of statistical methods in forensic genetics.
        Forensic Sci. Int. Genet. 2011; 5: 265-268
        • Haned H.
        • Gill P.
        Analysis of complex DNA mixtures using the forensim package.
        Forensic Sci. Int. Genet. 2011; 3: e79-e80
        • Balding D.J.
        • Buckleton J.
        Interpreting low template DNA profiles.
        Forensic Sci. Int. Genet. 2009; 4: 1-10
        • Mitchell A.A.
        • Tamariz J.
        • O
tm)Connell K.
        • Ducasse N.
        • Budimlija Z.
        • Prinz M.
        • et al.
        Validation of a DNA mixture statistics tool incorporating allelic drop-out and drop-in.
        Forensic Sci. Int. Genet. 2012; 6: 749-761
        • Lohmueller K.
        • Rudin N.
        Calculating the weight of evidence in low-template forensic DNA casework.
        J. Forensic Sci. 2013; 58: 234-259
        • Cowell R.G.
        • Lauritzen S.L.
        • Mortera J.
        A gamma model for DNA mixture analyses.
        Bayesian Anal. 2007; 2: 333-348
        • Evett I.W.
        • Gill P.D.
        • Lambert J.A.
        Taking account of peak areas when interpreting mixed DNA profiles.
        J. Forensic Sci. 1998; 43: 62-69
        • Taylor D.
        • Bright J.-A.
        • Buckleton J.
        The interpretation of single source and mixed DNA profiles.
        Forensic Sci. Int. Genet. 2013; 7: 516-528
        • Puch-Solis R.
        • Rodgers L.
        • Mazumder A.
        • Pope S.
        • Evett I.
        • Curran J.
        • et al.
        Evaluating forensic DNA profiles using peak heights, allowing for multiple donors, allelic dropout and stutters.
        Forensic Sci. Int. Genet. 2013; 7: 555-563
        • Perlin M.W.
        • Legler M.M.
        • Spencer C.E.
        • Smith J.L.
        • Allan W.P.
        • Belrose J.L.
        • et al.
        Validating TrueAllele¨r) DNA mixture interpretation.
        J. Forensic Sci. 2011; 56: 1430-1447
        • Kelly H.
        • Bright J.-A.
        • Buckleton J.S.
        • Curran J.M.
        A comparison of statistical models for the analysis of complex forensic DNA profiles.
        Sci. Justice. 2014; 54: 66-70
        • Steele C.D.
        • Balding D.J.
        Statistical evaluation of forensic DNA profile evidence.
        Annu. Rev. Stat. Appl. 2014; 1: 20-21
        • Dror G.
        • Hampikian G.
        Subjectivity and bias in forensic DNA mixture interpretation.
        Sci. Justice. 2011; 51: 204-208
        • Geddes L.
        Fallible DNA evidence can mean prison or freedom.
        New Sci. 2010; 207: 8-11
        • Butler J.M.
        Mixture interpretation: lessons from interlab study MIX05.
        in: National CODIS Conference, Arlington, VA2006
        • Coble M.D.
        MIX13: an interlaboratory study on the present state of DNA mixture interpretation in the U.S..
        5th Annual Prescription for Criminal Justice Forensics. Fordham University School of Law, 2014
      1. Scientific working group on DNA analysis methods (SWGDAM). SWGDAM Interpretation Guidelines for Autosomal STR Typing by Forensic DNA Testing Laboratories. [available from: http://www.fbi.gov/hq/lab/html/codis_swgdam.pdf] (2010).

        • Morling N.
        • Bastisch I.
        • Gill P.
        • Schneider P.M.
        Interpretation of DNA mixtures•European consensus on principles.
        Forensic Sci. Int. Genet. 2007; 1: 291-292
      2. Victoria lifts ban on DNA evidence. The Courier Mail 12 January 2010 [available from: http://www.couriermail.com.au/news/victoria-lifts-ban-on-dna-evidence/story-e6freon6-1225818464644?nk=2320bdc12d729f7cb718305a0b0408f3].

        • Haelser A.
        Issues in gathering, interpreting and delivering DNA evidence.
        in: Expert Evidence Conference, Canberra2011
        • Bright J.-A.
        • Taylor D.
        • Curran J.M.
        • Buckleton J.S.
        Developing allelic and stutter peak height models for a continuous method of DNA interpretation.
        Forensic Sci. Int. Genet. 2013; 7: 296-304
        • Bright J.-A.
        • Taylor D.
        • Buckleton J.S.
        Degradation of forensic DNA profiles.
        Aust. J. Forensic Sci. 2013; 45: 445-449
        • Bright J.-A.
        • Curran J.M.
        • Buckleton J.S.
        The effect of the uncertainty in the number of contributors to mixed DNA profiles on profile interpretation.
        Forensic Sci. Int. Genet. 2014; 12: 208-214
        • Bright J.-A.
        • Taylor D.
        • Curran J.
        • Buckleton J.
        Searching mixed DNA profiles directly against profile databases.
        Forensic Sci. Int. Genet. 2014; 9: 102-110
        • Taylor D.
        • Bright J.A.
        • Buckleton J.
        • Curran J.
        An illustration of the effect of various sources of uncertainty on DNA likelihood ratio calculations.
        Forensic Sci. Int. Genet. 2014; 11: 56-63
        • Prieto L.
        • Haned H.
        • Mosquera A.
        • Crespillo M.
        • Alemañ M.
        • Aler M.
        • et al.
        Euroforgen-NoE collaborative exercise on LRmix to demonstrate standardization of the interpretation of complex DNA profiles.
        Forensic Sci. Int. Genet. 2014; 9: 47-54
        • Bright J.-A.
        • Buckleton J.S.
        • McGovern C.E.
        Allele frequencies for the four major sub-populations of New Zealand for the 15 identifiler loci.
        Forensic Sci. Int. Genet. 2010; 4: e65-e66
        • Curran J.
        A MCMC method for resolving two person mixtures.
        Sci. Justice. 2008; 48: 168-177
        • Bright J.-A.
        • Stevenson K.E.
        • Curran J.M.
        • Buckleton J.S.
        The variability in likelihood ratios due to different mechanisms.
        Forensic Sci. Int. Genet. 2015; 14: 187-190
        • Krane D.E.
        • Ford S.
        • Gilder J.R.
        • Inman K.
        • Jamieson A.
        • Koppl R.
        • et al.
        Sequential unmasking: a means of minimizing observer effects in forensic DNA interpretation.
        J. Forensic Sci. 2008; 53: 1006-1007
        • Evett I.W.
        • Weir B.S.
        Interpreting DNA Evidence•Statistical Genetics for Forensic Scientists.
        Sinauer Associates, Inc., Sunderland1998
      3. Life Technologies Corporation. Considerations for Evaluating Carryover on Applied Biosystems Capillary Electrophoresis Platforms in a HID Laboratory. https://tools.lifetechnologies.com/downloads/tech-doc-carryover-ce-systems-during-hid-analysis.pdf (2012).

        • Taylor D.
        • Bright J.A.
        • Buckleton J.
        Interpreting forensic DNA profiling evidence without specifying the number of contributors.
        Forensic Sci. Int. Genet. 2014; 13: 269-280
      4. R.G. Cowell, T. Graversen, S. Lauritzen, J. Mortera, Analysis of forensic DNA mixtures with artefacts. arXiv:1302.4404 (2013).