Advertisement
Forensic population genetics – short communication| Volume 16, P132-137, May 2015

Results for five sets of forensic genetic markers studied in a Greek population sample

  • C. Tomas
    Affiliations
    Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V’s Vej 11, DK-2100 Copenhagen, Denmark
    Search for articles by this author
  • I. Skitsa
    Affiliations
    DNA Analysis Laboratory, Athens Legal Medicine Department, Ministry of Justice, Athens, Greece
    Search for articles by this author
  • E. Steinmeier
    Affiliations
    Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V’s Vej 11, DK-2100 Copenhagen, Denmark
    Search for articles by this author
  • L. Poulsen
    Affiliations
    Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V’s Vej 11, DK-2100 Copenhagen, Denmark
    Search for articles by this author
  • A. Ampati
    Affiliations
    DNA Analysis Laboratory, Athens Legal Medicine Department, Ministry of Justice, Athens, Greece
    Search for articles by this author
  • C. Børsting
    Affiliations
    Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V’s Vej 11, DK-2100 Copenhagen, Denmark
    Search for articles by this author
  • N. Morling
    Correspondence
    Corresponding author. Tel.: +45 3532 6110; fax: +45 3532 6270.
    Affiliations
    Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V’s Vej 11, DK-2100 Copenhagen, Denmark
    Search for articles by this author
Published:January 05, 2015DOI:https://doi.org/10.1016/j.fsigen.2015.01.001

      Highlights

      • A population sample of 223 Greek individuals from nine geographical areas.
      • Five sets of forensic genetic markers were used.
      • NGM SElect™, DIPplex®, SNPforID 49plex, Argus X-12, PowerPlex® Y23 System.
      • Statistically significant levels of LD in two X-chromosome linkage groups.
      • No statistically significant population structure in the Greek population.

      Abstract

      A population sample of 223 Greek individuals was typed for five sets of forensic genetic markers with the kits NGM SElect™, SNPforID 49plex, DIPplex®, Argus X-12 and PowerPlex® Y23. No significant deviation from Hardy–Weinberg expectations was observed for any of the studied markers after Holm–Šidák correction. Statistically significant (P < 0.05) levels of linkage disequilibrium were observed between markers within two of the studied X-chromosome linkage groups. AMOVA analyses of the five sets of markers did not show population structure when the individuals were grouped according to their geographic origin. The Greek population grouped closely to the other European populations measured by FST* distances. The match probability ranged from a value of 1 in 2 × 107 males by using haplotype frequencies of four X-chromosome haplogroups in males to 1 in 1.73 × 1021 individuals for 16 autosomal STRs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sanchez J.J.
        • Phillips C.
        • Børsting C.
        • Balogh K.
        • Bogus M.
        • Fondevila M.
        • et al.
        A multiplex assay with 52 single nucleotide polymorphisms for human identification.
        Electrophoresis. 2006; 27: 1713-1724
        • Friis S.L.
        • Børsting C.
        • Rockenbauer E.
        • Poulsen L.
        • Fredslund S.F.
        • Tomas C.
        • et al.
        Typing of 30 insertion/deletions in Danes using the first commercial indel kit-Mentype (R) DIPplex.
        Forensic Sci. Int. Genet. 2012; 6: e72-e74
        • Børsting C.
        • Mikkelsen M.
        • Morling N.
        Kinship analysis with diallelic SNPs – experiences with the SNPforID Multiplex in an ISO17025 accreditated laboratory.
        Transfus. Med. Hemother. 2012; 39: 195-201
        • Szibor R.
        • Krawczak M.
        • Hering S.
        • Edelmann J.
        • Kuhlisch E.
        • Krause D.
        Use of X-linked markers for forensic purposes.
        Int. J. Legal Med. 2003; 117: 67-74
        • Katsaloulis P.
        • Tsekoura K.
        • Vouropoulou M.
        • Miniati P.
        Genetic population study of 11 Y chromosome STR loci in Greece.
        Forensic Sci. Int. Genet. 2013; 7: e56-58
        • Purps J.
        • Siegert S.
        • Willuweit S.
        • Nagy M.
        • Alves C.
        • Salazar R.
        • et al.
        A global analysis of Y-chromosomal haplotype diversity for 23 STR loci.
        Forensic Sci. Int. Genet. 2014; 12: 12-23
        • Sanchez-Diz P.
        • Menounos P.G.
        • Carracedo A.
        • Skitsa I.
        16 STR data of a Greek population.
        Forensic Sci. Int. Genet. 2008; 2: e71-72
        • Walsh P.S.
        • Metzger D.A.
        • Higuchi R.
        Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material.
        Biotechniques. 1991; 10: 506-513
        • Børsting C.
        • Rockenbauer E.
        • Morling N.
        Validation of a single nucleotide polymorphism (SNP) typing assay with 49 SNPs for forensic genetic testing in a laboratory accredited according to the ISO 17025 standard.
        Forensic Sci. Int. Genet. 2009; 4: 34-42
        • Untergasser A.
        • Nijveen H.
        • Rao X.
        • Bisseling T.
        • Geurts R.
        • Leunissen J.A.
        Primer3Plus, an enhanced web interface to Primer3.
        Nucleic Acids Res. 2007; 35: W71-74
      1. Sequencher® version 5.1 sequence analysis software, Gene Codes Corporation, Ann Arbor, MI USA, http://www.genecodes.com.

        • Excoffier L.
        • Lischer H.E.
        Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.
        Mol. Ecol. Resour. 2010; 10: 564-567
        • Weir B.S.
        • Cockerham C.C.
        Estimating F-statistics for the analysis of population-structure.
        Evolution. 1984; 38: 1358-1370
        • Hatzer-Grubwieser P.
        • Berger B.
        • Niederwieser D.
        • Steinlechner M.
        Allele frequencies and concordance study of 16 STR loci–including the new European standard set (ESS) loci–in an Austrian population sample.
        Forensic Sci. Int. Genet. 2012; 6: e50-51
        • Curic G.
        • Gasic V.
        • Pluzaric V.
        • Smiljcic D.
        Genetic parameters of five new European standard set STR loci (D10S1248, D22S1045 D2S441, D1S1656, D12S391) in the population of eastern Croatia.
        Croat. Med. J. 2012; 53: 409-415
        • Tomas C.
        • Mogensen H.S.
        • Friis S.L.
        • Hallenberg C.
        • Stene M.C.
        • Morling N.
        Concordance study and population frequencies for 16 autosomal STRs analyzed with PowerPlex(R) ESI 17 and AmpFlSTR(R) NGM SElect in Somalis, Danes and Greenlanders.
        Forensic Sci. Int. Genet. 2014; 11: e18-21
        • Poetsch M.
        • Bayer K.
        • Ergin Z.
        • Milbrath M.
        • Schwark T.
        • von Wurmb-Schwark N.
        First experiences using the new Powerplex(R) ESX17 and ESI17 kits in casework analysis and allele frequencies for two different regions in Germany.
        Int. J. Legal Med. 2011; 125: 733-739
        • Molnar A.
        • Zalan A.
        • Horvath G.
        • Pamjav H.
        Allele distribution of the new European standard set (ESS) loci in the Hungarian population.
        Forensic Sci. Int. Genet. 2011; 5: 555-556
        • Rak S.Á.
        • Zalán A.
        • Szabados G.
        • Pamjav H.
        Population genetic data on 15 STR loci in the Hungarian population.
        Forensic Sci. Int. Genet. 2011; 5: 543-544
        • Berti A.
        • Brisighelli F.
        • Bosetti A.
        • Pilli E.
        • Trapani C.
        • Tullio V.
        • et al.
        Allele frequencies of the new European Standard Set (ESS) loci in the Italian population.
        Forensic Sci. Int. Genet. 2011; 5: 548-549
        • Jedrzejczyk M.
        • Jacewicz R.
        • Berent J.
        Forensic evaluation of the AmpFlSTR (R) NGM (TM) loci in Lodz region of Poland population sample.
        Int. J. Legal Med. 2013; 127: 911-912
        • Ribeiro T.
        • Dario P.
        • Vital N.
        • Sanches S.
        • Espinheira R.
        • Geada H.
        • et al.
        Population data of the AmpFlSTR (R) NGM (TM) loci in South Portuguese population.
        Forensic Sci. Int. Genet. 2013; 7: E37-E39
        • Stanciu F.
        • Vladu S.
        • Cutar V.
        • Cocioaba D.
        • Iancu F.
        • Cotolea A.
        • et al.
        Genetic parameters and allele frequencies of five new European Standard Set STR loci (D10S1248, D22S1045, D2S441, D1S1656, D12S391) in the population of Romania.
        Croat. Med. J. 2013; 54: 232-237
        • Drobnic K.
        • Regent A.
        • Budowle B.
        STR data for the AmpFlSTR SGM plus from Slovenia.
        Forensic Sci. Int. 2001; 115: 107-109
        • Pajnic I.Z.
        • Podovsovnik Axelsson E.
        • Balazic J.
        Slovenian population data for five new European standard set short tandem repeat loci and SE33 locus.
        Croat. Med. J. 2014; 55: 14-18
        • Garcia O.
        • Alonso J.
        • Cano J.A.
        • Garcia R.
        • Luque G.M.
        • Martin P.
        • et al.
        Population genetic data and concordance study for the kits Identifiler, NGM, PowerPlex ESX 17 System and Investigator ESSplex in Spain.
        Forensic Sci. Int. Genet. 2012; 6: E78-E79
        • Albinsson L.
        • Noren L.
        • Hedell R.
        • Ansell R.
        Swedish population data and concordance for the kits PowerPlex (R) ESX 16 System, PowerPlex (R) ESI 16 System AmpFlSTR (R) NGM (TM), AmpFlSTR (R) SGM Plus (TM) and Investigator ESSplex.
        Forensic Sci. Int. Genet. 2011; 5: E89-E92
        • Poetsch M.
        • von Wurmb-Schwark N.
        Allele frequencies for the 16 short tandem repeats of the Powerplex ESX17 kit in a population from Turkey.
        Int. J. Legal Med. 2013; 127: 591-592
      2. SNPforID browser: http://spsmart.cesga.es/snpforid.php.

        • Sharafi Farzad M.
        • Tomas C.
        • Børsting C.
        • Zeinali Z.
        • Malekdoost M.
        • Zeinali S.
        • et al.
        Analysis of 49 autosomal SNPs in three ethnic groups from Iran: Persians, Lurs and Kurds.
        Forensic Sci. Int. Genet. 2013; 7: 471-473
        • Tomas C.
        • Diez I.E.
        • Moncada E.
        • Børsting C.
        • Morling N.
        Analysis of 49 autosomal SNPs in an Iraqi population.
        Forensic Sci. Int. Genet. 2013; 7: 198-199
        • Martin P.
        • Garcia O.
        • Heinrichs B.
        • Yurrebaso I.
        • Aguirre A.
        • Alonso A.
        Population genetic data of 30 autosomal indels in Central Spain and the Basque Country populations.
        Forensic Sci. Int. Genet. 2013; 7: e27-e30
        • Larue B.L.
        • Ge J.Y.
        • King J.L.
        • Budowle B.
        A validation study of the Qiagen Investigator DIPplex (R) kit; an INDEL-based assay for human identification.
        Int. J. Legal Med. 2012; 126: 533-540
        • Kis Z.
        • Zalan A.
        • Volgyi A.
        • Kozma Z.
        • Domjan L.
        • Pamjav H.
        Genome deletion and insertion polymorphisms (DIPs) in the Hungarian population.
        Forensic Sci. Int. Genet. 2012; 6: e125-126
        • Turrina S.
        • Filippini G.
        • De Leo D.
        Forensic evaluation of the Investigator DIPplex typing system.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e331-e332https://doi.org/10.1016/j.fsigss.2011.09.028
        • Pepinski W.
        • Abreu-Glowacka M.
        • Koralewska-Kordel M.
        • Michalak E.
        • Kordel K.
        • Niemcunowicz-Janica A.
        • et al.
        Population genetics of 30 INDELs in populations of Poland and Taiwan.
        Mol. Biol. Rep. 2013; 40: 4333-4338
        • da Silva C.V.
        • Matos S.
        • Costa H.A.
        • Morais P.
        • dos Santos R.M.
        • Espinheira R.
        • et al.
        Genetic portrait of south Portugal population with InDel markers.
        Forensic Sci. Int. Genet. 2013; 7: e101-e103
        • Grskovic B.
        • Zidkova A.
        • Stenzl V.
        • Popovic M.
        • Primorac D.
        • Mrsic G.
        Analysis of 8 X-chromosomal markers in the population of central Croatia.
        Croat. Med. J. 2013; 54: 238-247
        • Zidkova P.
        • Capek A.
        • Horinek A.
        • Coufalova P.
        Investigator(R) Argus X-12 study on the population of Czech Republic: comparison of linked and unlinked X-STRs for kinship analysis.
        Electrophoresis. 2014;
        • Tomas C.
        • Pereira V.
        • Morling N.
        Analysis of 12 X-STRs in Greenlanders, Danes and Somalis using Argus X-12.
        Int. J. Legal Med. 2012; 126: 121-128
        • Elakkary S.
        • Hoffmeister-Ullerich S.
        • Schulze C.
        • Seif E.
        • Sheta A.
        • Hering S.
        • et al.
        Genetic polymorphisms of twelve X-STRs of the investigator Argus X-12 kit and additional six X-STR centromere region loci in an Egyptian population sample.
        Forensic Sci. Int. Genet. 2014; 11: 26-30
        • Edelmann J.
        • Lutz-Bonengel S.
        • Naue J.
        • Hering S.
        X-chromosomal haplotype frequencies of four linkage groups using the Investigator Argus X-12 Kit.
        Forensic Sci. Int. Genet. 2012; 6: e24-e34
        • Horvath G.
        • Zalan A.
        • Kis Z.
        • Pamjav H.
        A genetic study of 12 X-STR loci in the Hungarian population.
        Forensic Sci. Int. Genet. 2012; 6: e46-47
        • Inturri S.
        • Menegon S.
        • Amoroso A.
        • Torre C.
        • Robino C.
        Linkage and linkage disequilibrium analysis of X-STRs in Italian families.
        Forensic Sci. Int. Genet. 2011; 5: 152-154
        • Bentayebi K.
        • Picornell A.
        • Bouabdeallah M.
        • Castro J.A.
        • Aboukhalid R.
        • Squalli D.
        • et al.
        Genetic diversity of 12 X-chromosomal short tandem repeats in the Moroccan population.
        Forensic Sci. Int. Genet. 2012; 6: e48-e49
        • Luczak S.
        • Rogalla U.
        • Malyarchuk B.A.
        • Grzybowski T.
        Diversity of 15 human X chromosome microsatellite loci in Polish population.
        Forensic Sci. Int. Genet. 2011; 5: e71-77
        • Gelabert-Besada M.
        • Ferreira S.
        • Garcia-Magarinos M.
        • Gusmao L.
        • Sanchez-Diz P.
        Genetic characterization of Western Iberia using Mentype(R) Argus X-8 kit.
        Forensic Sci. Int. Genet. 2012; 6: e39-e41
        • Latter B.D.
        Selection in finite populations with multiple alleles. 3. Genetic divergence with centripetal selection and mutation.
        Genetics. 1972; 70: 475-490
        • Takezaki N.
        • Nei M.
        • Tamura K.
        POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with windows interface.
        Mol. Biol. Evol. 2010; 27: 747-752
        • Slatkin M.
        A measure of population subdivision based on microsatellite allele frequencies.
        Genetics. 1995; 139: 457-462
        • Nei M.
        Molecular Evolutionary Genetics.
        Columbia University Press, New York1987
        • Hedrick P.W.
        A standardized genetic differentiation measure.
        Evolution. 2005; 59: 1633-1638
        • Jost L.
        G(ST) and its relatives do not measure differentiation.
        Mol. Ecol. 2008; 17: 4015-4026
        • Holm S.
        A simple sequentially rejective multiple test procedure.
        Scand. J. Stat. 1979; 6: 65-70
      3. DNA∙VIEW™: http://dna-view.com/dnaview.htm.

        • Desmarais D.
        • Zhong Y.
        • Chakraborty R.
        • Perreault C.
        • Busque L.
        Development of a highly polymorphic STR marker for identity testing purposes at the human androgen receptor gene (HUMARA).
        J. Forensic Sci. 1998; 43: 1046-1049
      4. STRBase (Tri-allelic patterns): http://www.cstl.nist.gov/biotech/strbase/tri_tab.htm.

      5. STRBase (SE33 variants): http://www.cstl.nist.gov/strbase/var_SE33htm #Tri.

        • Raziel A.
        • Oz C.
        • Carmon A.D.
        • Ilsar R.
        • Zamir A.
        Discordance at D3S1358 locus involving SGM Plus and the European new generation multiplex kits.
        Forensic Sci. Int. Genet. 2012; 6: 108-112
        • Willems T.F.
        • Gymrek M.
        • Highnam G.
        • The Genomes P.
        • Mittelman D.
        • Erlich Y.
        The landscape of human STR variation.
        Genome Res. 2014;
        • Tillmar A.O.
        Population genetic analysis of 12 X-STRs in Swedish population.
        Forensic Sci. Int. Genet. 2012; 6: e80-e81
        • Meirmans P.G.
        • Hedrick P.W.
        Assessing population structure: F(ST) and related measures.
        Mol. Ecol. Resour. 2011; 11: 5-18
        • Brenner C.
        • Morris J.
        Paternity index calculation in single locus hypervariable DNA probes: validation and other studies.
        in: Proceedings of the International Symposium on Human Identification, Memorial Genetics Center, Long Beach, California1989: 21-53