Advertisement
Review| Volume 18, P90-99, September 2015

Download started.

Ok

Rapid PCR of STR markers: Applications to human identification

      Highlights

      • Compilation of current literature for rapid PCR techniques for human identification.
      • Uses of rapid PCR techniques within integrated rapid DNA testing devices.
      • Examination of rapid PCR on chip platforms with/without capillary electrophoresis.

      Abstract

      Multiplex PCR with fluorescently labeled primers has been an essential method for the amplification of short tandem repeats used in human identify testing. Within the STR workflow of extraction, quantitation, amplification, separation, and detection, multiplex PCR is commonly identified as the bottleneck in the process. The time requirement of up to three hours to complete 28–30 cycles of multiplex PCR for STR genotyping is the greatest amount of time required for a single step within the process. The historical use of commercially available thermal cyclers and heat stable polymerases may have given the impression that large multiplex will always require long PCR cycling times to ensure that all of the varying sized targets (typically 100–400 bp) can be amplified in a balanced manner throughout the multiplex. However, with the advent of improved polymerases and faster thermal cyclers the time required for the amplification of large STR multiplexes is no longer on the order of three hours, but as little as 14 min. Faster amplification times can be performed while retaining the balance and integrity of large multiplex PCRs by implementation of alternate polymerases and thermal cyclers. With the reduction in PCR cycling times there has also been an impact on the development of integrated and microfluidics devices which employ the use of reduced or rapid thermal cycling protocols as part of their integration. Similarly, PCR inhibitor resistant polymerases can also reduce overall STR processing times for reference samples by eliminating the need for DNA extraction and purification that is additionally implemented within the development of integrated DNA typing devices.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Butler J.M.
        Genetics and genomics of core short tandem repeat loci used in human identity testing.
        J. Forensic Sci. 2006; 51: 253-265
        • Krenke B.E.
        • Tereba A.
        • Anderson S.J.
        • Buel E.
        • Culhane S.
        • Finis C.J.
        • Tomsey C.S.
        • Zachetti J.M.
        • Masibay A.
        • Rabbach D.R.
        • Amiott E.A.
        • Sprecher C.J.
        Validation of a 16-locus fluorescent multiplex system.
        J. Forensic Sci. 2002; 47: 773-785
        • Collins P.J.
        • Hennessy L.K.
        • Leibelt C.S.
        • Roby R.K.
        • Reeder D.J.
        • Foxall P.A.
        Developmental validation of a single-tube amplification of the 13CODIS STR loci, D2S1338, D19S433, and amelogenin: the AmpFlSTR Identifiler PCR Amplification Kit.
        J. Forensic Sci. 2004; 49: 1265-1277
      1. Applied Biosystems, GlobalFiler Express Kit User’s Manual, Foster City, CA (2013).

      2. Promega Corporation, PowerPlex Fusion System Technical Manual, Madison, WI (2012).

        • Pomerantz R.T.
        • O’Donnell M.
        Replisome mechanics: insights into a twin DNA polymerase machine.
        Trends Microbiol. 2007; 15: 156-164
        • Wang Y.
        • Prosen D.E.
        • Mei L.
        • Sullivan J.C.
        • Finney M.
        • Vander Horn P.B.
        A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro.
        Nucleic Acids Res. 2004; 32: 1197-1207
      3. T.C. Evans, Anatomy of a polymerase – how structure effects function. NEB Expressions. https://www.neb.com/tools-and-resources/feature-articles/anatomy-of-a-polymerase-how-structure-effects-function (2008).

        • André C.
        New developments in PCR.
        BioTechniques. 2009; 46: 375-376
        • Kermekchiev M.B.
        • Kirilova L.I.
        • Vail E.E.
        • Barnes W.M.
        Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples.
        Nucleic Acids Res. 2009; 37: e40
        • de Vega M.
        • Lazaro J.M.
        • Mencia M.
        • Blanco L.
        • Salas M.
        Improvement of phi29 DNA polymerase amplification performance by fusion of DNA binding motifs.
        Proc. Natl. Acad. Sci. 2010; 107: 16506-16511
        • Pavlov A.R.
        • Belova G.I.
        • Kozyavkin S.A.
        • Slesarev A.I.
        Helix–hairpin–helix motifs confer salt resistance and processivity on chimeric DNA polymerases.
        Proc. Natl. Acad. Sci. 2002; 99: 13510-13515
        • Gardner A.F.
        • Kleman Z.
        DNA polymerases in biotechnology.
        Front Microbiol. 2014; 5: 1-3
        • Zhou H.
        • Wu D.
        • Chen R.
        • Xu Y.
        • Xia Z.
        • Guo Y.
        • et al.
        Developmental validation of a forensic rapid DNA-STR kit: Expressmarker 16.
        Forensic Sci. Int. Genet. 2014; 11: 31-38
        • Tsukada K.
        • Harayama Y.
        • Shimizu M.
        • Kurasawa Y.
        • Kasahara K.
        Fast PCR amplification of AmpFlSTR Yfiler.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e190-e191
        • Choung C.M.
        • Lee D.S.
        • Park K.W.
        • Han M.S.
        Test of the rapid PCR method using AmpFlSTR Identifiler kit.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e475-e476
        • Bahlmann S.
        • Hughes-Stamm S.
        • Gangitano D.
        Development and evaluation of a rapid PCR method for the PowerPlex S5 system for forensic DNA profiling.
        Leg. Med. (Tokyo). 2014; 16: 227-233
        • Zhang S.
        • Tian H.
        • Wang Z.
        • Zhao S.
        • Hu Z.
        • Li C.
        • et al.
        Development of a new 26plex Y-STRs typing system for forensic application.
        Forensic Sci. Int. Genet. 2014; 13: 112-120
        • White J.
        • Hughes-Stamm S.
        • Gangitano D.
        Development and validation of a rapid PCR method for the PowerPlex(R) 16 HS system for forensic DNA identification.
        Int. J. Legal Med. 2014; https://doi.org/10.1007/s00414-014-1102-1
        • Vallone P.M.
        • Hill C.R.
        • Butler J.M.
        Demonstration of rapid multiplex PCR amplification involving 16 genetic loci.
        Forensic Sci. Int. Genet. 2008; 3: 42-45
        • Vallone P.M.
        • Hill C.R.
        • Podini D.
        • Butler J.M.
        Rapid amplification of commercial STR typing kits.
        Forensic Sci. Int. Genet. Suppl. Ser. 2009; 2: 111-112
        • Wang D.Y.
        • Chang C.-W.
        • Hennessy L.K.
        Rapid STR analysis of single source DNA samples in 2 h.
        Forensic Sci. Int. Genet. Suppl. Ser. 2009; 2: 115-116
        • Laurin N.
        • Fregeau C.
        Optimization and validation of a fast amplification protocol for AmpFlSTR Profiler Plus for rapid forensic human identification.
        Forensic Sci. Int. Genet. 2012; 6: 47-57
        • Foster A.
        • Laurin N.
        Development of a fast PCR protocol enabling rapid generation of AmpFlSTR Identifiler profiles for genotyping of human DNA.
        Investig. Genet. 2012; 3: 6
        • Butts E.L.R.
        • Vallone P.M.
        Rapid PCR protocols for forensic DNA typing on six thermal cycling platforms.
        Electrophoresis. 2014; 35: 3053-3061
        • Jin H.X.
        • Seo S.B.
        • Lee H.Y.
        • Cho S.
        • Ge J.
        • King J.
        • et al.
        Differences of PCR efficiency between two-step PCR and standard three-step PCR protocols in short tandem repeat amplification.
        Aust. J. Forensic Sci. 2013; 46: 80-90
        • Wang D.Y.
        • Chang C.W.
        • Lagace R.E.
        • Oldroyd N.J.
        • Hennessy L.K.
        Development and validation of the AmpFlSTR Identifiler Direct PCR Amplification kit: a multiplex assay for the direct amplification of single-source samples.
        J. Forensic Sci. 2011; 56: 835-845
        • Oostdik K.
        • French J.
        • Yet D.
        • Smalling B.
        • Nolde C.
        • Vallone P.M.
        • et al.
        Developmental validation of the PowerPlex 18D system: a rapid STR multiplex for analysis of reference samples.
        Forensic Sci. Int. Genet. 2013; 7: 129-135
        • Scherer M.
        • Alsdorf B.
        • Bochmann L.
        • Prochnow A.
        • Engel H.
        Development of the Investigator STR GO! kits for the direct amplification of reference samples.
        Forensic Sci. Int. Genet. Suppl. Ser. 2013; 4: e15-e16
        • Flores S.
        • Sun J.
        • King J.
        • Budowle B.
        Internal validation of the GlobalFiler™ Express PCR Amplification Kit for the direct amplification of reference DNA samples on a high-throughput automated workflow.
        Forensic Sci. Int. Genet. 2014; 10: 33-39
        • Martín P.
        • de Simón L.F.
        • Luque G.
        • Farfán M.J.
        • Alonso A.
        Improving DNA data exchange: validation studies on a single 6 dye STR kit with 24 loci.
        Forensic Sci. Int. Genet. 2014; 13: 68-78
        • Thompson J.M.
        • Ewing M.M.
        • Frank W.E.
        • Pogemiller J.J.
        • Nolde C.A.
        • Koehler D.J.
        • et al.
        Developmental validation of the PowerPlex Y23 System: a single multiplex Y-STR analysis system for casework and database samples.
        Forensic Sci. Int. Genet. 2013; 7: 240-250
        • Ensenberger M.G.
        • Hill C.R.
        • McLaren R.S.
        • Sprecher C.J.
        • Storts D.R.
        Developmental validation of the PowerPlex 21 System.
        Forensic Sci. Int. Genet. 2014; 9: 169-178
        • Oostdik K.
        • Lenz K.
        • Nye J.
        • Schelling K.
        • Yet D.
        • Bruski S.
        • et al.
        Developmental validation of the PowerPlex Fusion System for analysis of casework and reference samples: a 24-locus multiplex for new database standards.
        Forensic Sci. Int. Genet. 2014; 12: 69-76
        • McLaren R.S.
        • Bourdeau-Heller J.
        • Patel J.
        • Thompson J.M.
        • Pagram J.
        • Loake T.
        • et al.
        Developmental validation of the PowerPlex ESI 16/17 Fast and PowerPlex ESX 16/17 Fast Systems.
        Forensic Sci. Int. Genet. 2014; 13: 195-205
        • Wang D.Y.
        • Chang C.-W.
        • Oldroyd N.J.
        • Hennessy L.K.
        Direct amplification of STRs from blood or buccal cell samples.
        Forensic Sci. Int. Genet. Suppl. Ser. 2009; 2: 113-114
        • Myers B.A.
        • King J.L.
        • Budowle B.
        Evaluation and comparative analysis of direct amplification of STRs using PowerPlex 18D and Identifiler Direct systems.
        Forensic Sci. Int. Genet. 2012; 6: 640-645
        • Gray K.
        • Crowle D.
        • Scott P.
        Direct amplification of casework bloodstains using the Promega PowerPlex 21 PCR Amplification System.
        Forensic Sci. Int. Genet. 2014; 12: 86-92
        • Park S.J.
        • Kim J.Y.
        • Yang Y.G.
        • Lee S.H.
        Direct STR amplification from whole blood and blood- or saliva-spotted FTA without DNA purification.
        J. Forensic Sci. 2008; 53: 335-341
      4. Applied Biosystems, Quick Reference: AmpFlSTR Identifiler Direct PCR Amplification Kit-PCR Setup-Swab Substrate, Foster City, CA (2012).

      5. Promega Corporation, SwabSolution Kit Technical Manual, Madison, WI (2015).

      6. Promega Corporation, PunchSolution Kit Technical Manual, Madison, WI (2015).

        • Templeton J.
        • Ottens R.
        • Paradiso V.
        • Handt O.
        • Taylor D.
        • Linacre A.
        Genetic profiling from challenging samples: direct PCR of touch DNA.
        Forensic Sci. Int. Genet. Suppl. Ser. 2013; 4: e224-e225
        • Linacre A.
        • Pekarek V.
        • Swaran Y.C.
        • Tobe S.S.
        Generation of DNA profiles from fabrics without DNA extraction.
        Forensic Sci. Int. Genet. 2010; 4: 137-141
        • Verheij S.
        • Harteveld J.
        • Sijen T.
        A protocol for direct and rapid multiplex PCR amplification on forensically relevant samples.
        Forensic Sci. Int. Genet. 2012; 6: 167-175
        • Chen T.
        • Catcheside D.E.
        • Stephenson A.
        • Hefford C.
        • Kirkbride K.P.
        • Burgoyne L.A.
        A rapid wire-based sampling method for DNA profiling.
        J. Forensic Sci. 2012; 57: 472-477
        • Aboud M.
        • Oh H.H.
        • McCord B.
        Rapid direct PCR for forensic genotyping in under 25 min.
        Electrophoresis. 2013; 34: 1539-1547
        • Maltezos G.
        • Johnston M.
        • Taganov K.
        • Srichantaratsamee C.
        • Gorman J.
        • Baltimore D.
        • et al.
        Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange: a proof of principle.
        Appl. Phys. Lett. 2010; 97: 264101
        • Fujimoto T.
        PCR. novel high speed real time method (hyper PCR): results from its application to adenovirus diagnosis.
        Jpn. J. Infect. Dis. 2010; 63: 31-35
        • Wheeler E.K.
        • Hara C.A.
        • Frank J.
        • Deotte J.
        • Hall S.B.
        • Benett W.
        • et al.
        Under-three minute PCR: probing the limits of fast amplification.
        Analyst. 2011; 136: 3707-3712
        • Lagally E.T.
        • Medintz I.
        • Mathies R.A.
        Single-molecule DNA amplification and analysis in an integrated microfluidic device.
        Anal. Chem. 2001; 73: 565-570
        • Liu J.Y.
        Direct qPCR quantification using the Quantifiler® Trio DNA quantification kit.
        Forensic Sci. Int. Genet. 2014; 13: 10-19
        • Wittwer C.T.
        • Ririe K.M.
        • Andrew R.V.
        • David D.A.
        • Gundry R.A.
        • Balis U.J.
        The LightCycler. a microvolume multisample fluorimeter with rapid temperature control.
        BioTechniques. 1997; 22: 176-181
        • French D.J.
        • McDowell D.G.
        • Thomson J.A.
        • Brown T.
        • Debenham P.G.
        HyBeacons: a novel DNA probe chemistry for rapid genetic analysis.
        Int. Congr. Ser. 2006; 1288: 707-709
        • Gale N.
        • French D.J.
        • Howard R.L.
        • McDowell D.G.
        • Debenham P.G.
        • Brown T.
        Rapid typing of STRs in the human genome by HyBeacon melting.
        Org. Biomol. Chem. 2008; 6: 4553-4559
        • French D.J.
        • Howard R.L.
        • Gale N.
        • Brown T.
        • McDowell D.G.
        • Debenham P.G.
        Interrogation of short tandem repeats using fluorescent probes and melting curve analysis: a step towards rapid DNA identity screening.
        Forensic Sci. Int. Genet. 2008; 2: 333-339
        • Farrar J.S.
        • Witter C.T.
        Extreme PCR efficient and specific DNA amplification in 15–60 s.
        Clin. Chem. 2015; 61: 145-153
        • Ho S.N.
        • Hunt H.D.
        • Horton R.M.
        • Pullen J.K.
        • Pease L.R.
        Site-directed mutagenesis by overlap extension using the polymerase chain reaction.
        Gene. 1989; 77: 51-59
        • Cheng J.
        • Shoffer M.A.
        • Hvichia G.E.
        • Kricka L.J.
        • Wilding P.
        Chip PCR II. Investigation of different PCR amplification systems in microfabricated silicon-glass chips.
        Nucleic Acids Res. 1996; 24: 380-385
        • Anderson R.C.
        • Su X.
        • Bogdan G.J.
        • Fenton J.A.
        Miniature integrated device for automated multistep genetic assays.
        Nucleic Acids Res. 2000; 28: 60E
        • Yang J.
        • Liu Y.
        • Rauch C.B.
        • Stevens R.L.
        • Liu R.H.
        • Lenigk R.
        • et al.
        High sensitivity PCR assay in plastic micro reactors.
        Lab Chip. 2002; 2: 179-187
        • Kopp M.
        • De Mello A.
        • Manz A.
        Chemical amplification: Continuous-Flow PCR on a chip.
        Science. 1998; 280: 1046-1048
        • Chou C.F.
        • Changrani R.
        • Roberts P.
        • Sadler D.
        • Lin S.
        • Mulholland A.
        • Swami N.
        • Terbrneggen R.
        • Zenhausern F.
        Rapid genotyping with integrated continuous-flow PCR and bioelectronics detection.
        Microelectron Eng. 2002; 92: l-925
        • Terazono H.
        • Takei H.
        • Hattori A.
        • Yasuda K.
        Development of a high-speed real-time polymerase chain reaction system using a circulating water-based rapid heat-exchange.
        Jpn. J. Appl. Phys. 2010; 49: 06GM5
        • Terazono H.
        • Matsuura K.
        • Kim H.
        • Takei H.
        • Hattori A.
        • Nomura F.
        • et al.
        Homogenous measurement during a circulation-water-based ultrahigh-speed polymerase chain reaction and melting curve analysis device.
        Jpn. J. Appl. Phys. 2014; 53: 06JM8
        • Hataoka Y.
        • Zhang L.
        • Yukimasa T.
        • Baba Y.
        Rapid microvolume PCR of DNA confirmed by microchip electrophoresis.
        Anal. Sci. Int. J. Jpn. Soc. Anal. Chem. 2005; 21: 53-56
        • Neuzil P.
        • Zhang C.
        • Pipper J.
        • Oh S.
        • Zhuo L.
        Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes.
        Nucleic Acids Res. 2006; 34: e77
        • Belgrader P.
        • Smith J.K.
        • Weedn V.W.
        • Northrup M.A.
        • Rapid P.C.R.
        for identity testing using a battery-powered miniature thermal cycler.
        J. Forensic Sci. 1998; 43: 315-319
        • Belgrader P.
        • Benett W.
        • Hadley D.
        • Richards J.
        • Stratton P.
        • Mariella Jr., R.
        • et al.
        PCR detection of bacteria in seven minutes.
        Science. 1999; 284: 449-450
        • Giese H.
        • Lam R.
        • Selden R.
        • Tan E.
        Fast multiplexed polymerase chain reaction for conventional and microfluidic short tandem repeat analysis.
        J. Forensic Sci. 2009; 54: 1287-1296
        • Estes M.D.
        • Yang J.
        • Duane B.
        • Smith S.
        • Brooks C.
        • Nordquist A.
        • et al.
        Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis.
        Analyst. 2012; 137: 5510-5519
        • Zhang C.
        • Xu J.
        • Ma W.
        • Zheng W.
        PCR microfluidic devices for DNA amplification.
        Biotechnol. Adv. 2006; 24: 243-284
        • Wittwer C.T.
        • Fillmore G.C.
        • Hillyard D.R.
        Automated polymerase chain reaction in capillary tubes with hot air.
        Nucleic Acids Res. 1989; 17: 4353-4357
        • Oda R.P.
        • Strausbauch M.A.
        • Huhmer A.F.R.
        • Borson N.
        • Jurrens S.R.
        • Craighead J.
        • et al.
        Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA.
        Anal. Chem. 1998; 70: 4361-4368
        • Giordano B.C.
        • Ferrance J.
        • Swedberg S.
        • Hühmer A.F.R.
        • Landers J.P.
        Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 s.
        Anal. Biochem. 2001; 291: 124-132
        • Hagan K.A.
        • Reedy C.R.
        • Bienvenue J.M.
        • Dewald A.H.
        • Landers J.P.
        A valveless microfluidic device for integrated solid phase extraction and polymerase chain reaction for short tandem repeat (STR) analysis.
        Analyst. 2011; 136: 1928-1937
        • Lounsbury J.A.
        • Karlsson A.
        • Miranian D.C.
        • Cronk S.M.
        • Nelson D.A.
        • Li J.
        • et al.
        From sample to PCR product in under 45 min: a polymeric integrated microdevice for clinical and forensic DNA analysis.
        Lab Chip. 2013; 13: 1384-1393
        • Legendre L.A.
        • Bienvenue J.M.
        • Roper M.G.
        • Ferrance J.P.
        • Landers J.P.
        A simple: valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples.
        Anal. Chem. 2006; 78: 1444-1451
        • Lounsbury J.A.
        • Landers J.P.
        Ultrafast amplification of DNA on plastic microdevices for forensic short tandem repeat analysis.
        J. Forensic Sci. 2013; 58: 866-874
        • Roper M.G.
        • Easley C.J.
        • Landers J.P.
        Advances in polymerase chain reaction on microfluidic chips.
        Anal. Chem. 2005; 77: 3887-3893
        • Horsman K.M.
        • Bienvenue J.M.
        • Blasier K.R.
        • Landers J.P.
        Forensic DNA analysis on microfluidic devices: a review.
        J. Forensic Sci. 2007; 52: 784-799
        • Zhang C.
        • Xing D.
        Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends.
        Nucleic Acids Res. 2007; 35: 4223-4237
        • Schmalzing D.
        • Koutny L.
        • Adourian A.
        • Belgrader P.
        • Mat-sudaira P.
        • Ehrlich D.
        DNA typing in thirty seconds with a microfabricated device.
        Proc. Natl. Acad. Sci. 1997; 94: 10273-10278
        • Goedecke N.
        • McKenna B.
        • El-Difrawy S.
        • Carey L.
        • Matsudaira P.
        • Ehrlich D.
        A high-performance multilane microdevice system designed for the DNA forensics laboratory.
        Electrophoresis. 2004; 25: 1678-1686
        • Mitnik L.
        • Carey L.
        • Burger R.
        • Desmarais S.
        • Koutny L.
        • Wernet O.
        • et al.
        High-speed analysis of multiplexed short tandem repeats with an electrophoretic microdevice.
        Electrophoresis. 2002; 23: 719-726
        • Liu P.
        • Greenspoon S.A.
        • Yeung S.H.
        • Scherer J.R.
        • Mathies R.A.
        Integrated sample cleanup and microchip capillary array electrophoresis for high-performance forensic STR profiling.
        Methods Mol. Biol. 2012; 830: 351-365
        • Shi Y.
        • Anderson R.C.
        High-resolution single-stranded DNA analysis on 45 cm plastic electrophoretic microchannels.
        Electrophoresis. 2003; 24: 3371-3377
        • Yeung S.H.
        • Greenspoon S.A.
        • McGuckian A.
        • Crouse C.A.
        • Emrich C.A.
        • Ban J.
        • et al.
        Rapid and high-throughput forensic short tandem repeat typing using a 96-lane microfabricated capillary array electrophoresis microdevice.
        J. Forensic Sci. 2006; 51: 740-747
        • Paegel B.M.
        • Emrich C.A.
        • Weyemayer G.J.
        • Scherer J.R.
        • Mathies R.A.
        High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor.
        Proc. Natl. Acad. Sci. 2002; 99: 574-579
        • Blazej R.G.
        • Paegel B.M.
        • Mathies R.A.
        Polymorphism ratio sequencing: a new approach for single nucleotide polymorphism discovery and genotyping.
        Genome Res. 2003; 13: 287-293
        • Yeung S.H.
        • Medintz I.L.
        • Greenspoon S.A.
        • Mathies R.A.
        Rapid determination of monozygous twinning with a microfabricated capillary array electrophoresis genetic-analysis device.
        Clin. Chem. 2008; 54: 1080-1084
        • Yeung S.H.
        • Liu P.
        • Del Bueno N.
        • Greenspoon S.A.
        • Mathies R.A.
        Integrated sample cleanup-capillary electrophoresis microchip for high-performance short tandem repeat genetic analysis.
        Anal. Chem. 2009; 81: 210-217
        • Greenspoon S.A.
        • Yeung S.H.
        • Johnson K.R.
        • Chu W.K.
        • Rhee H.N.
        • McGuckian A.B.
        • et al.
        A forensic laboratory tests the Berkeley microfabricated capillary array electrophoresis device.
        J. Forensic Sci. 2008; 53: 828-837
        • Scherer J.R.
        • Liu P.
        • Mathies R.A.
        Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.
        Rev. Sci. Instrum. 2010; 81: 113105
        • Woolley A.T.
        • Hadley D.
        • Landre P.
        • deMello A.J.
        • Mathies R.A.
        • Northrup M.A.
        Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device.
        Anal. Chem. 1996; 68: 4081-4086
        • Jin L.J.
        • Ferrance J.
        • Landers J.P.
        Miniaturized electrophoresis: an evolving role in laboratory medicine.
        BioTechniques. 2001; 31: 1332-1342
        • Obeid P.J.
        • Christopoulos T.K.
        • Crabtree H.J.
        • Backhouse C.J.
        Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection.
        Anal. Chem. 2002; 75: 288-295
        • Dawnay N.
        • Stafford-Allen B.
        • Moore D.
        • Blackman S.
        • Rendell P.
        • Hanson E.K.
        • et al.
        Developmental validation of the ParaDNA screening system – a presumptive test for the detection of DNA on forensic evidence items.
        Forensic Sci. Int. Genet. 2014; 11: 73-79
        • Ball G.
        • Dawnay N.
        • Stafford-Allen B.
        • Panasiuk M.
        • Rendell P.
        • Blackman S.
        • et al.
        Concordance study between the ParaDNA Intelligence Test, a Rapid DNA profiling assay, and a conventional STR typing kit (AmpFlSTR SGM Plus).
        Forensic Sci. Int. Genet. 2014; 16: 48-51
        • Tan E.
        • Turingan R.S.
        • Hogan C.
        • Vasantgadkar S.
        • Palombo L.
        • Schumm J.W.
        • et al.
        Fully integrated: fully automated generation of short tandem repeat profiles.
        Investig. Genet. 2013; 4: 2041-2223
        • Jovanovich S.
        • Bogdan G.
        • Belcinski R.
        • Buscaino J.
        • Burgi D.
        • Butts E.L.R.
        • et al.
        Developmental validation of a fully integrated sample-to-profile rapid human identification system for processing single-source reference buccal samples.
        Forensic Sci. Int. Genet. 2015; 16: 181-194
        • Hennessy L.K.
        • Franklin H.
        • Li Y.
        • Buscaino J.
        • Chear K.
        • Gass J.
        • et al.
        Developmental validation studies on the RapidHIT™ Human DNA Identification System.
        Forensic Sci. Int. Genet. Suppl. Ser. 2013; 4: e7-e8
        • Gangano S.
        • Elliott K.
        • Anoruo K.
        • Gass J.
        • Buscaino J.
        • Jovanovich S.
        • et al.
        DNA investigative lead development from blood and saliva samples in less than two hours using the RapidHIT™ Human DNA Identification System.
        Forensic Sci. Int. Genet. Suppl. Ser. 2013; 4: e43-e44
        • Verheij S.
        • Clarisse L.
        • van den Berge M.
        • Sijen T.
        RapidHIT 200: a promising system for rapid DNA analysis.
        Forensic Sci. Int. Genet. Suppl. Ser. 2013; 4: e254-e255
        • Mogensen H.S.
        • Frank-Hansen R.
        • Simonsen B.T.
        • Morling N.
        Performance of the RapidHIT200.
        Forensic Sci. Int. Genet. Suppl. Ser. 2013; 4: e286-e287
        • LaRue B.L.
        • Moore A.
        • King J.L.
        • Marshall P.L.
        • Budowle B.
        An evaluation of the RapidHIT system for reliably genotyping reference samples.
        Forensic Sci. Int. Genet. 2014; 13: 104-111
        • Holland M.
        • Wendt F.
        Evaluation of the RapidHIT 200: an automated human identification system for STR analysis of single source samples.
        Forensic Sci. Int. Genet. 2015; 14: 76-85
        • Hennessy L.K.
        • Mehendale N.
        • Chear K.
        • Jovanovich S.
        • Williams S.
        • Park C.
        • et al.
        Developmental validation of the GlobalFiler express kit a 24-marker STR assay, on the RapidHIT System.
        Forensic Sci. Int. Genet. 2014; 13: 247-258
        • Hopwood A.J.
        • Hurth C.
        • Yang J.
        • Cai Z.
        • Moran N.
        • Lee-Edghill J.G.
        • et al.
        Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile.
        Anal. Chem. 2010; 82: 6991-6999
        • Njoroge S.K.
        • Chen H.W.
        • Witek M.A.
        • Soper S.A.
        Integrated microfluidic systems for DNA analysis.
        Top. Curr. Chem. 2011; 304: 203-260
        • Hurth C.
        • Smith S.D.
        • Nordquist A.R.
        • Lenigk R.
        • Duane B.
        • Nguyen D.
        • et al.
        An automated instrument for human STR identification: design characterization, and experimental validation.
        Electrophoresis. 2010; 31: 3510-3517
        • Le Roux D.
        • Root B.E.
        • Reedy C.R.
        • Hickey J.A.
        • Scott O.N.
        • Bienvenue J.M.
        • et al.
        DNA analysis using an integrated microchip for multiplex PCR amplification and electrophoresis for reference samples.
        Anal. Chem. 2014; 86: 8192-8199
        • Le Roux D.
        • Root B.E.
        • Reedy C.R.
        • Hickey J.A.
        • Scott O.N.
        • Tsuei A.
        • Li J.
        • Saul D.J.
        • Chassagne L.
        • Landers J.P.
        An integrated sample-in-answer-out microfluidic chip for rapid human identification by STR analysis.
        Lab Chip. 2014; 14: 4415-4425
        • Liu P.
        • Seo T.S.
        • Beyor N.
        • Shin K.J.
        • Scherer J.R.
        • Mathies R.A.
        Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing.
        Anal. Chem. 2007; 79: 1881-1889
        • Liu P.
        • Yeung S.H.
        • Crenshaw K.A.
        • Crouse C.A.
        • Scherer J.R.
        • Mathies R.A.
        Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer.
        Forensic Sci. Int. Genet. 2008; 2: 301-309
        • Liu P.
        • Li X.
        • Greenspoon S.A.
        • Scherer J.R.
        • Mathies R.A.
        Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification.
        Lab Chip. 2011; 11: 1041-1048
        • Easley C.J.
        • Karlinsey J.M.
        • Bienvenue J.M.
        • Legendre L.A.
        • Roper M.G.
        • Feldman S.H.
        • et al.
        A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability.
        Proc. Natl. Acad. Sci. 2006; 103: 19272-19277
        • Verheij S.
        • van Gorp A.G.M.
        • Benschop C.C.G.
        • Harteveld J.
        • Matai A.S.
        • Sijen T.
        Implementation and first case results of a rapid DNA profiling service.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e427-e428