Advertisement
Research paper| Volume 19, P280-288, November 2015

Evaluation of the predictive capacity of DNA variants associated with straight hair in Europeans

Published:September 14, 2015DOI:https://doi.org/10.1016/j.fsigen.2015.09.004

      Highlights

      • A replication study was made of SNPs most closely associated with hair morphology variation in Europeans (assigning straight, wavy and curly hair phenotypes).
      • Analysis of 670 samples from seven European populations revealed the strongest association for rs11803731 in TCHH, rs7349332 in WNT10A and rs1268789 in FRAS1.
      • Applying three different mathematical models to assess the predictive capacity of the SNPs indicated neural networks gives the best performing model to predict straight hair with high sensitivity and better specificity than logistic regression and CRT methods.
      • The combined TTGGGG SNP genotype (rs11803731-rs7349332-rs1268789) was identified as the best predictor, giving greater than 80% probability of straight hair.
      • The reported study is the first assessment of the forensic suitability of hair morphology as an externally visible characteristic. The results provide the basis for extended analyses of SNPs associated with this trait.

      Abstract

      DNA-based prediction of hair morphology, defined as straight, curly or wavy hair, could contribute to an improved description of an unknown offender and allow more accurate forensic reconstructions of physical appearance in the field of forensic DNA phenotyping. Differences in scalp hair morphology are significant at the worldwide scale and within Europe. The only genome-wide association study made to date revealed the Trichohyalin gene (TCHH) to be significantly associated with hair morphology in Europeans and reported weaker associations for WNT10A and FRAS1 genes. We conducted a study that centered on six SNPs located in these three genes with a sample of 528 individuals from Poland. The predictive capacity of the candidate DNA variants was evaluated using logistic regression; classification and regression trees; and neural networks, by applying a 10-fold cross validation procedure. Additionally, an independent test set of 142 males from six European populations was used to verify performance of the developed prediction models. Our study confirmed association of rs11803731 (TCHH), rs7349332 (WNT10A) and rs1268789 (FRAS1) SNPs with hair morphology. The combined genotype risk score for straight hair had an odds ratio of 2.7 and these predictors explained ∼8.2% of the total variance. The selected three SNPs were found to predict straight hair with a high sensitivity but low specificity when a 10-fold cross validation procedure was applied and the best results were obtained using the neural networks approach (AUC = 0.688, sensitivity = 91.2%, specificity = 23.0%). Application of the neural networks model with 65% probability threshold on an additional test set gave high sensitivity (81.4%) and improved specificity (50.0%) with a total of 78.7% correct calls, but a high non-classification rate (66.9%). The combined TTGGGG SNP genotype for rs11803731, rs7349332, rs1268789 (European frequency = 4.5%) of all six straight hair-associated alleles was identified as the best predictor, giving >80% probability of straight hair. Finally, association testing of 44 SNPs previously identified to be associated with male pattern baldness revealed a suggestive association with hair morphology for rs4679955 on 3q25.1. The study results reported provide the starting point for the development of a predictive test for hair morphology in Europeans. More studies are now needed to discover additional determinants of hair morphology to improve the predictive accuracy of this trait in forensic analysis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kayser M.
        • Schneider P.M.
        DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations.
        Forensic Sci. Int. Genet. 2009; 3: 154-161
        • Branicki W.
        Studies on predicting pigmentation phenotype for forensic purposes.
        Prob. Forensic Sci. 2009; 77: 29-52
        • Kayser M.
        • de Knijff P.
        Improving human forensics through advances in genetics, genomics and molecular biology.
        Nat. Rev. Genet. 2011; 12: 179-192
        • Branicki W.
        • Pośpiech E.
        • Kupiec T.
        • Styrna J.
        A new dimension of the forensic DNA expertise – the need for training experts and expertise recipients.
        Arch. Med. Sadowej Kryminol. 2014; 64: 175-194
        • Kayser M.
        Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes.
        Forensic Sci. Int. Genet. 2015; 18: 33-48
        • Walsh S.
        • Liu F.
        • Ballantyne K.N.
        • van Oven M.
        • Lao O.
        • et al.
        IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information.
        Forensic Sci. Int. Genet. 2011; 5: 170-180
        • Ruiz Y.
        • Phillips C.
        • Gomez-Tato A.
        • Alvarez-Dios J.
        • de Cal Casares M.
        • et al.
        Further development of forensic eye color predictive tests.
        Forensic Sci. Int. Genet. 2013; 7: 28-40
        • Allwood J.S.
        • Harbison S.
        SNP model development for the prediction of eye colour in New Zealand.
        Forensic Sci. Int. Genet. 2013; 7: 444-452
        • Hart K.L.
        • Kimura S.L.
        • Mushailov V.
        • Budimlija Z.M.
        • Prinz M.
        • et al.
        Improved eye- and skin-color prediction based on 8 SNPs.
        Croat. Med. J. 2013; 54: 248-256
        • Branicki W.
        • Liu F.
        • van Duijn K.
        • Draus-Barini J.
        • Pośpiech E.
        • et al.
        Model-based prediction of human hair color using DNA variants.
        Hum. Genet. 2011; 129: 443-454
        • Walsh S.
        • Liu F.
        • Wollstein A.
        • Kovatsi L.
        • Ralf A.
        • et al.
        The HIrisplex System for simultaneous prediction of hair and eye colour categories including hair colour shade from DNA.
        Forensic Sci. Int. Genet. 2013; 7: 98-115
        • Söchtig J.
        • Phillips C.
        • Maroñas O.
        • Gómez-Tato A.
        • Cruz R.
        • Alvarez-Dios J.
        • et al.
        Exploration of SNP variants affecting hair colour prediction in Europeans.
        Int. J. Legal Med. 2015; https://doi.org/10.1007/s00414-015-1226-y
        • Marcińska M.
        • Pośpiech E.
        • Abidi S.
        • Dyrberg Andersen J.
        • van den Berge M.
        • Carracedo Á.
        • Eduardoff M.
        • Marczakiewicz-Lustig Á.
        • Morling N.
        • Sijen T.
        • Skowron M.
        • Söchtig J.
        • Syndercombe-Court D.
        • Weiler N.
        • The EUROFORGEN-NoE Consortium
        • Ballard D.
        • Børsting C.
        • Parson W.
        • Phillips C.
        • Branicki W.
        Evaluation of DNA variants associated with androgenetic alopecia and their potential to predict male pattern baldness.
        PLoS One. 2015; https://doi.org/10.1371/journal.pone.0127852
        • Franbourg A.
        • Hallegot P.
        • Baltenneck F.
        • Toutain C.
        • Leroy F.
        Current research on ethnic hair.
        J. Am. Acad. Dermatol. 2003; 48: S115-S119
        • Loussouarn G.
        • Garcel A.L.
        • Lozano I.
        • Collaudin C.
        • Porter C.
        • Panhard S.
        • Saint-Léger D.
        • de La Mettrie R.
        Worldwide diversity of hair curliness: a new method of assessment.
        Int. J. Dermatol. 2007; 46: 2-6
        • Medland S.E.
        • Zhu G.
        • Martin N.G.
        Estimating the heritability of hair curliness in twins of European ancestry.
        Twin Res. Hum. Genet. 2009; 12: 514-518
        • Van Scott E.J.
        • Ekel T.M.
        Geometric relationships between the matrix of the hair bulb and its dermal papilla in normal and alopecic scalp.
        J. Invest. Dermatol. 1958; 5: 281-287
        • Thibaut S.
        • Bernard B.A.
        The biology of hair shape.
        Int. J. Dermatol. 2005; 44: 2-3
        • Thibaut S.
        • Barbarat P.
        • Leroy F.
        • Bernard B.A.
        Human hair keratin network and curvature.
        Int. J. Dermatol. 2007; 46: 7-10
        • Steinert P.M.
        • Parry D.A.
        • Marekov L.N.
        Trichohyalin mechanically strengthens the hair follicle: multiple cross-bridging roles in the inner root sheath.
        J. Biol. Chem. 2003; 278: 41409-41419
        • Yamamoto S.
        • Hirai K.
        • Hasegawa-Oka Y.
        • Hirai Y.
        Molecular elements of the regulatory control of keratin filament modulator AHF/trichohyalin in the hair follicle.
        Exp. Dermatol. 2009; 18: 152-159
        • Westgate G.E.
        • Botchkareva N.V.
        • Tobin D.J.
        The biology of hair diversity.
        Int. J. Cosmet. Sci. 2013; 35: 329-336
        • Fujimoto A.
        • Kimura R.
        • Ohashi J.
        • Omi K.
        • Yuliwulandari R.
        • Batubara L.
        • Mustofa M.S.
        • Samakkarn U.
        • Settheetham-Ishida W.
        • Ishida T.
        • Morishita Y.
        • Furusawa T.
        • Nakazawa M.
        • Ohtsuka R.
        • Tokunaga K.
        A scan for genetic determinants of human hair morphology: EDAR is associated with Asian hair thickness.
        Hum. Mol. Genet. 2008; 17: 835-843
        • Fujimoto A.
        • Nishida N.
        • Kimura R.
        • Miyagawa T.
        • Yuliwulandari R.
        • Batubara L.
        • Mustofa M.S.
        • Samakkarn U.
        • Settheetham-Ishida W.
        • Ishida T.
        • Morishita Y.
        • Tsunoda T.
        • Tokunaga K.
        • Ohashi J.
        FGFR2 is associated with hair thickness in Asian populations.
        J. Hum. Genet. 2009; 54: 461-465
        • Tan J.
        • Yang Y.
        • Tang K.
        • Sabeti P.C.
        • Jin L.
        • Wang S.
        The adaptive variant EDARV370A is associated with straight hair in East Asians.
        Hum. Genet. 2013; 132: 1187-1191
        • Medland S.E.
        • Nyholt D.R.
        • Painter J.N.
        • McEvoy B.P.
        • McRae A.F.
        • Zhu G.
        • Gordon S.D.
        • Ferreira M.A.
        • Wright M.J.
        • Henders A.K.
        • Campbell M.J.
        • Duffy D.L.
        • Hansell N.K.
        • Macgregor S.
        • Slutske W.S.
        • Heath A.C.
        • Montgomery G.W.
        • Martin N.G.
        Common variants in the trichohyalin gene are associated with straight hair in Europeans.
        Am. J. Hum. Genet. 2009; 85: 750-755
        • Eriksson N.
        • Macpherson J.M.
        • Tung J.Y.
        • Hon L.S.
        • Naughton B.
        • Saxonov S.
        • Avey L.
        • Wojcicki A.
        • Pe’er I.
        • Mountain J.
        Web-based, participant-driven studies yield novel genetic associations for common traits.
        PLoS Genet. 2010; 6: e1000993
        • Heilmann S.
        • Kiefer A.K.
        • Fricker N.
        • Drichel D.
        • Hillmer A.M.
        • Herold C.
        • et al.
        Androgenetic alopecia: identification of four genetic risk loci and evidence for the contribution of WNT signaling to its etiology.
        J. Invest. Dermatol. 2013; 133: 1489-1496
        • Prodi D.A.
        • Pirastu N.
        • Maninchedda G.
        • Sassu A.
        • Picciau A.
        • Palmas M.A.
        • et al.
        EDA2R is associated with androgenetic alopecia.
        J. Invest. Dermatol. 2008; 128: 2268-2270
        • Richards J.B.
        • Yuan X.
        • Geller F.
        • Waterworth D.
        • Bataille V.
        • Glass D.
        • et al.
        Male pattern baldness susceptibility locus at 20p11.
        Nat. Genet. 2008; 40: 1282-1284
        • Hillmer A.M.
        • Brockschmidt F.F.
        • Hanneken S.
        • Eigelshoven S.
        • Steffens M.
        • Flaquer A.
        • et al.
        Susceptibility variants for male-pattern baldness on chromosome 20p11.
        Nat. Genet. 2008; 40: 1279-1281
        • Hillmer A.
        • Freudenberg J.
        • Myles S.
        • Herms S.
        • Tang K.
        • Hughes D.A.
        • et al.
        Recent positive selection of a human androgen receptor/ectodysplasin A2 receptor haplotype and its relationship to male pattern baldness.
        Hum. Genet. 2009; 126: 255-264
        • Cobb J.E.
        • Zaloumis S.G.
        • Scurrah K.J.
        • Harrap S.B.
        • Ellis J.A.
        Evidence for two independent functional variant for androgenetic alopecia around the androgen receptor gene.
        Exp. Dermatol. 2010; 19: 1026-1028
        • Brockschmidt F.F.
        • Heilmann S.
        • Ellis J.A.
        • Eigelshoven S.
        • Hanneken S.
        • Herold C.
        • et al.
        Susceptibility variants on chromosome 7p21.1 suggest HDAC9 as a new candidate gene for male-pattern baldness.
        Br. J. Dermatol. 2011; 165: 1293-1302
        • Li R.
        • Brockschmidt F.F.
        • Kiefer A.K.
        • Stefansson H.
        • Nyholt D.R.
        • Song K.
        • et al.
        Six novel susceptibility loci for early-onset androgenetic alopecia and their unexpected association with common diseases.
        PLoS Genet. 2012; 8: e1002746
        • Redler S.
        • Brockschmidt F.F.
        • Tazi-Ahnini R.
        • Drichel D.
        • Birch M.P.
        • Dobson K.
        • et al.
        Investigation of the male pattern baldness major genetic susceptibility loci AR/EDA2R and 20p11 in female pattern hair loss.
        Br. J. Dermatol. 2012; 166: 1314-1318
        • McKenna A.
        • Hanna M.
        • Banks E.
        • Sivachenko A.
        • Cibulskis K.
        • Kernytsky A.
        The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
        Genome Res. 2010; 20: 1297-1303
        • Balding D.J.
        A tutorial on statistical methods for population association studies.
        Nat. Rev. Genet. 2006; 7: 781-791
        • Barendse W.
        Haplotype analysis improved evidence for candidate genes for intramuscular fat percentage from a genome wide association study of cattle.
        PLoS One. 2011; https://doi.org/10.1371/journal.pone.0029601
        • Kirin M.
        • Chandra A.
        • Charteris D.G.
        • Hayward C.
        • Campbell S.
        • Celap I.
        • et al.
        Genome-wide association study identifies genetic risk underlying primary rhegmatogenous retinal detachment.
        Hum. Mol. Genet. 2013; 22: 3174-3185
        • Hastie T.
        • Trevor T.
        • Tibshirani R.
        • Friedman J.
        The Elements of Statistical Learning. Data Mining, Inference, and Prediction.
        second edition. Springer Series of Statistics, 2009
        • Hosmer D.W.
        • Lemeshow S.
        • Sturdivant R.X.
        Applied Logistic Regression.
        third edition. John Wiley & Sons, Hoboken, NJ2013
        • Rojas R.
        Neural Networks: a Systematic Introduction.
        Springer, Berlin1996
        • Liu F.
        • van Duijn K.
        • Vingerling J.R.
        • Hofman A.
        • Uitterlinden A.G.
        • et al.
        Eye color and the prediction of complex phenotypes from genotypes.
        Curr. Biol. 2009; 19: R192-R193
        • Pośpiech E.
        • Draus-Barini J.
        • Kupiec T.
        • Wojas-Pelc A.
        • Branicki W.
        Prediction of eye color from genetic data using Bayesian approach.
        J. Forensic Sci. 2012; 57: 880-886
        • Kastelic V.
        • Drobnic K.
        A single-nucleotide polymorphism (SNP) multiplex system: the association of five SNPs with human eye and hair color in the Slovenian population and comparison using a Bayesian network and logistic regression model.
        Croat. Med. J. 2012; 53: 401-408
        • Pośpiech E.
        • Wojas-Pelc A.
        • Walsh S.
        • Liu F.
        • Maeda H.
        • Ishikawa T.
        • Skowron M.
        • Kayser M.
        • Branicki W.
        The common occurrence of epistasis in the determination of human pigmentation and its impact on DNA-based pigmentation phenotype prediction.
        Forensic Sci. Int. Genet. 2014; 11: 64-72
        • Schumacher M.
        • Rossner R.
        Neural networks and logistic regression: part I.
        Comput. Stat. Data Anal. 1996; 21: 661-682
        • Tarassenko L.
        A Guide to Neural Computing Applications.
        Arnold Publishers, London1998: 1-4
        • Kastelic V.
        • Pośpiech E.
        • Draus-Barini J.
        • Branicki W.
        • Drobnič K.
        Prediction of eye color in the Slovenian population using the IrisPlex SNPs.
        Croat. Med. J. 2013; 54: 381-386
        • Pośpiech E.
        • Draus-Barini J.
        • Kupiec T.
        • Wojas-Pelc A.
        • Branicki W.
        Gene–gene interactions contribute to eye colour variation in humans.
        J. Hum. Genet. 2011; 56: 447-455