Advertisement

Genetic analysis of the Yavapai Native Americans from West-Central Arizona using the Illumina MiSeq FGx™ forensic genomics system

      Highlights

      • A total of 58 STRs and 172 SNPs were typed in 62 Yavapai individuals.
      • Hardy Weinberg Equilibrium and pairwise linkage disequilibrium were tested.
      • Y-STR haplogroup and haplotype assessments were performed.
      • Biogeographic ancestry and phenotypic profiles were generated.
      • Because of the increased marker set, profile power of discrimination and random match probability for STRs and SNPs are greater than previously reported values.

      Abstract

      Forensically-relevant genetic markers were typed for sixty-two Yavapai Native Americans using the ForenSeq™ DNA Signature Prep Kit.These data are invaluable to the human identity community due to the greater genetic differentiation among Native American tribes than among other subdivisions within major populations of the United States. Autosomal, X-chromosomal, and Y-chromosomal short tandem repeat (STR) and identity-informative (iSNPs), ancestry-informative (aSNPs), and phenotype-informative (pSNPs) single nucleotide polymorphism (SNP) allele frequencies are reported. Sequence-based allelic variants were observed in 13 autosomal, 3 X, and 3 Y STRs. These observations increased observed and expected heterozygosities for autosomal STRs by 0.081 ± 0.068 and 0.073 ± 0.063, respectively, and decreased single-locus random match probabilities by 0.051 ± 0.043 for 13 autosomal STRs. The autosomal random match probabilities (RMPs) were 2.37 × 10–26 and 2.81 × 10–29 for length-based and sequence-based alleles, respectively. There were 22 and 25 unique Y-STR haplotypes among 26 males, generating haplotype diversities of 0.95 and 0.96, for length-based and sequencebased alleles, respectively. Of the 26 haplotypes generated, 17 were assigned to haplogroup Q, three to haplogroup R1b, two each to haplogroups E1b1b and L, and one each to haplogroups R1a and I1. Male and female sequence-based X-STR random match probabilities were 3.28 × 10–7 and 1.22 × 10–6, respectively. The average observed and expected heterozygosities for 94 iSNPs were 0.39 ± 0.12 and 0.39 ± 0.13, respectively, and the combined iSNP RMP was 1.08 × 10–32. The combined STR and iSNP RMPs were 2.55 × 10–58 and 3.02 × 10–61 for length-based and sequence-based STR alleles, respectively. Ancestry and phenotypic SNP information, performed using the ForenSeq™ Universal Analysis Software, predicted black hair, brown eyes, and some probability of East Asian ancestry for all but one sample that clustered between European and Admixed American ancestry on a principal components analysis. These data serve as the first population assessment using the ForenSeq™ panel and highlight the value of employing sequence-based alleles for forensic DNA typing to increase heterozygosity, which is beneficial for identity testing in populations with reduced genetic diversity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. http://grandcanyonhistory.clas.asu.edu/history_nativecultures_yavapaiapache.html.

      2. http://arizonaexperience.org/people/indian-tribes-and-communities.

        • Churchill J.D.
        • Schmedes S.E.
        • King J.L.
        • Budowle B.
        Evaluation of the Illumina(®) beta version ForenSeq™ DNA signature prep kit for use in genetic profiling.
        Forensic. Sci. Int. Genet. 2016; 20 (January, Epub 2015 Sep 21. PubMed PMID: 26433485): 20-29https://doi.org/10.1016/j.fsigen.2015.09.009
      3. ForenSeq™ DNA Signature Prep Reference Guide. Document # 15049528. September 2015. http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/forenseq/forenseq-dna-signature-prep-guide-15049528-01.pdf.

        • Smith D.G.
        • Lorenz J.
        • Rolfs B.K.
        • Bettinger R.L.
        • Green B.
        • Eshleman J.
        • Schultz B.
        • Malhi R.
        Implications of the distribution of Albumin Naskapi and Albumin Mexico for new world prehistory.
        Am. J. Phys. Anthropol. 2000; 111 (PubMed PMID: 10727973): 557-572
        • Monroe C.
        • Kemp B.M.
        • Smith D.G.
        Exploring prehistory in the North American southwest with mitochondrial DNA diversity exhibited by Yumans and Athapaskans.
        Am. J. Phys. Anthropol. 2013; 150 (Epub 2013 Feb 26. PubMed PMID: 23440652): 618-631https://doi.org/10.1002/ajpa.22237
      4. MiSeq System User Guide. https://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/miseq/miseq-system-guide-15027617-o.pdf.

      5. RStudio Team 2015 RStudio: Integrated Development for R.R Studio, Inc., Boston MA URL http://www.rstudio.com/.

      6. Genetic Data Analysis Software. Lewis and Zaykin. 1999.

      7. Walther Parson, David Ballard, Bruce Budowle, John M. Butler, Katherine B. Gettings, Peter Gill, Leonor Gusm̃ao, Douglas R. Hares, Jodi A. Irwin, Jonathan L. King, Peter de Knijff, Niels Morling, Mechthild Prinz, Peter M. Schneider, Christophe Van Neste, Sascha Willuweit, Christopher Phillips, Massively Parallel Sequencing of forensic STRs: Considerations of the DNA commission of the international society for forensic genetics (ISFG) on minimal nomenclature requirements, Forensic Science International: Genetics http://dx.doi.org/10.1016/j.fsigen.2016.01.009.

      8. National Research Council (U.S.). Committee on DNA Forensic Science. Evaluation of Forensic DNA Evidence. Washington, D.C.: National Academy, 1996. http://www.nap.edu/catalog5141.html.

        • Gettings K.B.
        • Aponte R.A.
        • Vallone P.M.
        • Butler J.M.
        STR allele sequence variation: current knowledge and future issues.
        Forensic. Sci. Int. Genet. 2015; 18 (September, Epub 2015 Jul 6. PubMed PMID: 26197946.): 118-130https://doi.org/10.1016/j.fsigen.2015.06.005
        • Warshauer D.H.
        • Churchill J.D.
        • Novroski N.
        • King J.L.
        • Budowle B.
        Novel Y-chromosome short tandem repeat variants detected through the use of massively parallel sequencing.
        Genomics Proteomics Bioinf. 2015; 13 (Epub 2015 Sep 21. PubMed PMID: 26391384; PubMed Central PMCID: PMC4610967.): 250-257https://doi.org/10.1016/j.gpb.2015.08.001
        • Ruitberg C.M.
        • Reeder D.J.
        • Butler J.M.
        STRBase: a short tandem repeat DNA database for the human identity testing community.
        Nucleic. Acids Res. 2001; 29 (PubMed PMID: 11125125; PubMed Central PMCID: PMC29767.): 320-322
        • D'Amato M.E.
        • Ehrenreich L.
        • Cloete K.
        • Benjeddou M.
        • Davison S.
        Characterization of the highly discriminatory loci DYS449, DYS481, DYS518, DYS612, DYS626, DYS644 and DYS710.
        Forensic. Sci. Int. Genet. 2010; 4 (Epub 2009 Jul 29. PubMed PMID: 20129468.): 104-110https://doi.org/10.1016/j.fsigen.2009.06.011
        • Coble M.D.
        • Hill C.R.
        • Butler J.M.
        Haplotype data for 23 Y-chromosome markers in four U.S. population groups.
        Forensic. Sci. Int. Genet. 2013; 7: e66-e68
        • Hill C.R.
        • Duewer D.L.
        • Kline M.C.
        • Coble M.D.
        • Butler J.M.
        U.S. population data for 29 autosomal STR loci.
        Forensic. Sci. Int. Genet. 2013; 7: e82-e83
        • Butler J.M.
        • Hill C.R.
        • Coble M.D.
        Variability of New STR Loci and Kits in U.S Population Groups. Profiles in DNA.
        2012 (Available at http://www.promega.com/resources/articles/profiles-in-dna/2012/variability-of-new-str-loci-and-kits-in-us-population-groups/.)
        • Becker D.
        • Rodig H.
        • Augustin C.
        • Edelmann J.
        • Götz F.
        • Hering S.
        • Szibor R.
        • Brabetz W.
        Population genetic evaluation of eight X-chromosomal short tandem repeat loci using Mentype Argus X-8 PCR amplification kit.
        Forensic. Sci. Int. Genet. 2008; 2 (Epub 2007 Sep 29. PubMed PMID: 19083792): 69-74https://doi.org/10.1016/j.fsigen.2007.08.013
        • Gomes I.
        • Prinz M.
        • Pereira R.
        • Meyers C.
        • Mikulasovich R.S.
        • Amorim A.
        • Carracedo A.
        • Gusmão L.
        Genetic analysis of three US population groups using an X-chromosomal STR decaplex.
        Int. J. Legal Med. 2007; 121 (Epub 2007 Jan 20. PubMed PMID: 17237948.): 198-203
        • Liu Q.L.
        • Wang J.Z.
        • Quan L.
        • Zhao H.
        • Wu Y.D.
        • Huang X.L.
        • Lu D.J.
        Allele and haplotype diversity of 26 X-STR loci in four nationality populations from China.
        PLoS One. 2013; 8 (June 21, Print 2013. PubMed PMID: 23805185; PubMed Central PMCID: PMC3689794.): e65570
        • Bortolini M.C.
        • Salzano F.M.
        • Thomas M.G.
        • Stuart S.
        • Nasanen S.P.
        • Bau C.H.
        • Hutz M.H.
        • Layrisse Z.
        • Petzl-Erler M.L.
        • Tsuneto L.T.
        • Hill K.
        • Hurtado A.M.
        • Castro-de-Guerra D.
        • Torres M.M.
        • Groot H.
        • Michalski R.
        • Nymadawa P.
        • Bedoya G.
        • Bradman N.
        • Labuda D.
        • Ruiz-Linares A.
        Y-chromosome evidence for differing ancient demographic histories in the Americas.
        Am. J. Hum. Genet. 2003; 73 (Epub 2003 Jul 28. PubMed PMID: 12900798; PubMed Central PMCID: PMC1180678.): 524-539
        • Malhi R.S.
        • Gonzalez-Oliver A.
        • Schroeder K.B.
        • Kemp B.M.
        • Greenberg J.A.
        • Dobrowski S.Z.
        • Smith D.G.
        • Resendez A.
        • Karafet T.
        • Hammer M.
        • Zegura S.
        • Brovko T.
        Distribution of Y chromosomes among native North Americans: a study of Athapaskan population history.
        Am. J. Phys. Anthropol. 2008; 137 (PubMed PMID: 18618732; PubMed Central PMCID: PMC2584155.): 412-424https://doi.org/10.1002/ajpa.20883
        • Davis C.
        • Ge J.
        • Chidambaram A.
        • King J.
        • Turnbough M.
        • Collins M.
        • Dym O.
        • Chakraborty R.
        • Eisenberg A.J.
        • Budowle B.
        Y-STR loci diversity in native Alaskan populations.
        Int. J. Legal. Med. 2011; 125 (Epub 2011 Mar 30. PubMed PMID: 21448665.): 559-563https://doi.org/10.1007/s00414-011-0568-3
        • Poulsen L.
        • Børsting C.
        • Tomas C.
        • González-Andrade F.
        • Lopez-Pulles R.
        • González-Solórzano J.
        • Morling N.
        Typing of Amerindian kichwas and mestizos from Ecuador with the SNPforID multiplex.
        Forensic. Sci. Int. Genet. 2011; 5 (Epub 2011 Apr 9. PubMed PMID: 21481663.): e105-7https://doi.org/10.1016/j.fsigen.2011.03.006
        • Kiesler K.M.
        • Vallone P.M.
        Allele frequencies for 40 autosomal SNP loci typed for US population samples using electrospray ionization mass spectrometry.
        Croat. Med. J. 2013; 54: 225-231https://doi.org/10.3325/cmj.2013.54.225
        • Budowle B.
        • Chakraborty R.
        • Carmody G.
        • Monson K.
        Source attribution of a forensic DNA profile.
        Forensic. Sci. Commun. 2000;