Advertisement

Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length

      Highlights

      • Estimating a person’s age from blood left at a crime scene provides crucial forensic information.
      • We studied the age effect of mRNA, DNA methylation, sjTREC, telomere length in blood.
      • Genome-wide marker search was followed by rigorous technical and biological validations.
      • Overall, DNA methylation markers outperformed in age correlation all other biomarkers tested.
      • A model with 8 DNA methylation markers achieved high accuracy in estimating age from blood.

      Abstract

      Establishing the age of unknown persons, or persons with unknown age, can provide important leads in police investigations, disaster victim identification, fraud cases, and in other legal affairs. Previous methods mostly relied on morphological features available from teeth or skeletal parts. The development of molecular methods for age estimation allowing to use human specimens that possess no morphological age information, such as bloodstains, is extremely valuable as this type of samples is commonly found at crime scenes. Recently, we introduced a DNA-based approach for human age estimation from blood based on the quantification of T-cell specific DNA rearrangements (sjTRECs), which achieves accurate assignment of blood DNA samples to one of four 20-year-interval age categories. Aiming at improving the accuracy of molecular age estimation from blood, we investigated different types of biomarkers. We started out by systematic genome-wide surveys for new age-informative mRNA and DNA methylation markers in blood from the same young and old individuals using microarray technologies. The obtained candidate markers were validated in independent samples covering a wide age range using alternative technologies together with previously proposed DNA methylation, sjTREC, and telomere length markers. Cross-validated multiple regression analysis was applied for estimating and validating the age predictive power of various sets of biomarkers within and across different marker types. We found that DNA methylation markers outperformed mRNA, sjTREC, and telomere length in age predictive power. The best performing model included 8 DNA methylation markers derived from 3 CpG islands reaching a high level of accuracy (cross-validated R2 = 0.88, SE ± 6.97 years, mean absolute deviation 5.07 years). However, our data also suggest that mRNA markers can provide independent age information: a model using a combined set of 5 DNA methylation markers and one mRNA marker could provide similarly high accuracy (cross-validated R2 = 0.86, SE ± 7.62 years, mean absolute deviation 4.60 years). Overall, our study provides new and confirms previously suggested molecular biomarkers for age estimation from blood. Moreover, our comparative study design revealed that DNA methylation markers are superior for this purpose over other types of molecular biomarkers tested. While the new and some previous findings are highly promising, before molecular age estimation can eventually meet forensic practice, the proposed biomarkers should be tested further in larger sets of blood samples from both healthy and unhealthy individuals, and markers and genotyping methods shall be validated to meet forensic standards.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ritz-Timme S.
        • Cattaneo C.
        • Collins M.J.
        • Waite E.R.
        • Schutz H.W.
        • Kaatsch H.J.
        • et al.
        Age estimation: the state of the art in relation to the specific demands of forensic practise.
        Int. J. Legal Med. 2000; 113: 129-136
        • Schmeling A.
        • Geserick G.
        • Reisinger W.
        • Olze A.
        Age estimation.
        Forensic Sci. Int. 2007; 165: 178-181
        • Alkass K.
        • Buchholz B.A.
        • Ohtani S.
        • Yamamoto T.
        • Druid H.
        • Spalding K.L.
        Age estimation in forensic sciences: application of combined aspartic acid racemization and radiocarbon analysis.
        Mol. Cell. Prot. 2010; 9: 1022-1030
        • Michikawa Y.
        • Mazzucchelli F.
        • Bresolin N.
        • Scarlato G.
        • Attardi G.
        Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication.
        Science. 1999; 286: 774-779
        • Takasaki T.
        • Tsuji A.
        • Ikeda N.
        • Ohishi M.
        Age estimation in dental pulp DNA based on human telomere shortening.
        Int. J. Legal Med. 2003; 117: 232-234
        • Meissner C.
        • Ritz-Timme S.
        Molecular pathology and age estimation.
        Forensic Sci. Int. 2010; 203: 34-43
        • Saeed M.
        • Berlin R.M.
        • Cruz T.D.
        Exploring the utility of genetic markers for predicting biological age.
        Leg. Med. (Tokyo). 2012; 14: 279-285
        • Karlsson A.O.
        • Svensson A.
        • Marklund A.
        • Holmlund G.
        Estimating human age in forensic samples by analysis of telomere repeats.
        Forensic Sci. Int. 2016; : 569-571
        • Zubakov D.
        • Liu F.
        • van Zelm M.C.
        • Vermeulen J.
        • Oostra B.A.
        • van Duijn C.M.
        • et al.
        Estimating human age from T-cell DNA rearrangements.
        Curr. Biol. 2010; 20: R970-1
        • Ou X.
        • Zhao H.
        • Sun H.
        • Yang Z.
        • Xie B.
        • Shi Y.
        • et al.
        Detection and quantification of the age-related sjTREC decline in human peripheral blood.
        Int. J. Legal Med. 2011; 125: 603-608
        • Cho S.
        • Ge J.
        • Seo S.B.
        • Kim K.
        • Lee H.Y.
        • Lee S.D.
        Age estimation via quantification of signal-joint T cell receptor excision circles in Koreans.
        Leg. Med. (Tokyo). 2014; 16: 135-138
        • Fraga M.F.
        • Esteller M.
        Epigenetics and aging: the targets and the marks.
        Trends Genet. 2007; 23: 413-418
        • Horvath S.
        • Zhang Y.
        • Langfelder P.
        • Kahn R.S.
        • Boks M.P.
        • van Eijk K.
        • et al.
        Aging effects on DNA methylation modules in human brain and blood tissue.
        Genome Biol. 2012; 13: R97
        • Richardson B.
        Impact of aging on DNA methylation.
        Ageing Res. Rev. 2003; 2: 245-261
        • Guarente L.
        • Partridge L.
        • Wallace D.C.
        Molecular Biology of Aging.
        Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y2008
        • Finkel T.
        • Serrano M.
        • Blasco M.A.
        The common biology of cancer and ageing.
        Nature. 2007; 448: 767-774
        • Weidner C.I.
        • Lin Q.
        • Koch C.M.
        • Eisele L.
        • Beier F.
        • Ziegler P.
        • et al.
        Aging of blood can be tracked by DNA methylation changes at just three CpG sites.
        Genome Biol. 2014; 15: R24
        • Garagnani P.
        • Bacalini M.G.
        • Pirazzini C.
        • Gori D.
        • Giuliani C.
        • Mari D.
        • et al.
        Methylation of ELOVL2 gene as a new epigenetic marker of age.
        Aging Cell. 2012; 11: 1132-1134
        • Horvath S.
        DNA methylation age of human tissues and cell types.
        Genome Biol. 2013; 14: R115
        • Koch C.M.
        • Wagner W.
        Epigenetic-aging-signature to determine age in different tissues.
        Aging (Albany, NY). 2011; 3: 1018-1027
        • Zbieć-Piekarska R.
        • Spólnicka M.
        • Kupiec T.
        • Makowska Ż
        • Spas A.
        • Parys-Proszek A.
        • et al.
        Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science.
        Forensic Sci. Int. Genet. 2016; 14: 161-167
        • Yi S.
        • Jia Y.
        • Mei K.
        • Yang R.
        • Huang D.
        Age-related DNA methylation changes for forensic age-prediction.
        Int. J. Legal Med. 2014; : 1-8
        • Huang Y.
        • Yan J.
        • Hou J.
        • Fu X.
        • Li L.
        • Hou Y.
        Developing a DNA methylation assay for human age prediction in blood and bloodstain.
        Forensic Sci Int Genet. 2015; 17: 129-136
        • Zbiec-Piekarska R.
        • Spolnicka M.
        • Kupiec T.
        • Parys-Proszek A.
        • Makowska Z.
        • Paleczka A.
        • et al.
        Development of a forensically useful age prediction method based on DNA methylation analysis.
        Forensic Sci. Int. Genet. 2015; 17: 173-179
        • Yi S.H.
        • Xu L.C.
        • Mei K.
        • Yang R.Z.
        • Huang D.X.
        Isolation and identification of age-related DNA methylation markers for forensic age-prediction.
        Forensic Sci. Int. Genet. 2014; 11: 117-125
      1. Jong-Lyul Park JHK, Eunhye Seo, Dong Hyuck Bae, Seon-Young Kim, Han-Chul Lee, Kwang-Man Woo, Yong Sung Kim. Identification and evaluation of age-correlated DNA methylation markers for forensic use. Forensic Sci. Int. Genet. 2016.

        • Lee H.Y.
        • Jung S.E.
        • Oh Y.N.
        • Choi A.
        • Yang W.I.
        • Shin K.J.
        Epigenetic age signatures in the forensically relevant body fluid of semen: a preliminary study.
        Forensic Sci. Int. Genet. 2015; 19: 28-34
        • Bocklandt S.
        • Lin W.
        • Sehl M.E.
        • Sanchez F.J.
        • Sinsheimer J.S.
        • Horvath S.
        • et al.
        Epigenetic predictor of age.
        PLoS One. 2011; 6: e14821
        • Hannum G.
        • Guinney J.
        • Zhao L.
        • Zhang L.
        • Hughes G.
        • Sadda S.
        • et al.
        Genome-wide methylation profiles reveal quantitative views of human aging rates.
        Mol. Cell. 2013; 49: 359-367
        • Florath I.
        • Butterbach K.
        • Muller H.
        • Bewerunge-Hudler M.
        • Brenner H.
        Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites.
        Hum. Mol. Genet. 2014; 23: 1186-1201
        • Marttila S.
        • Kananen L.
        • Hayrynen S.
        • Jylhava J.
        • Nevalainen T.
        • Hervonen A.
        • et al.
        Ageing-associated changes in the human DNA methylome: genomic locations and effects on gene expression.
        BMC Genom. 2015; 16: 179
        • de Magalhaes J.P.
        • Curado J.
        • Church G.M.
        Meta-analysis of age-related gene expression profiles identifies common signatures of aging.
        Bioinformatics. 2009; 25: 875-881
        • Pan F.
        • Chiu C.H.
        • Pulapura S.
        • Mehan M.R.
        • Nunez-Iglesias J.
        • Zhang K.
        • et al.
        Gene aging nexus: a web database and data mining platform for microarray data on aging.
        Nucl. Acids Res. 2007; 35: D756-9
        • Alvarez M.
        • Ballantyne J.
        The identification of newborns using messenger RNA profiling analysis.
        Anal. Biochem. 2006; 357: 21-34
        • Pardo L.M.
        • MacKay I.
        • Oostra B.
        • van Duijn C.M.
        • Aulchenko Y.S.
        The effect of genetic drift in a young genetically isolated population.
        Ann. Hum. Genet. 2005; 69: 288-295
        • Hofman A.
        • Breteler M.M.
        • van Duijn C.M.
        • Krestin G.P.
        • Pols H.A.
        • Stricker B.H.
        • et al.
        The Rotterdam Study: objectives and design update.
        Eur. J. Epidemiol. 2007; 22: 819-829
        • Hofman A.
        • Grobbee D.E.
        • de Jong P.T.
        • van den Ouweland F.A.
        Determinants of disease and disability in the elderly: the Rotterdam elderly study.
        Eur. J. Epidemiol. 1991; 7: 403-422
        • Lewin J.
        • Plum A.
        • Hildmann T.
        • Rujan T.
        • Eckhardt F.
        • Liebenberg V.
        • et al. Comparative D.N.A.
        methylation analysis in normal and tumour tissues and in cancer cell lines using differential methylation hybridisation.
        Int. J. Biochem. Cell Biol. 2007; 39: 1539-1550
        • Lewin J.
        • Schmitt A.O.
        • Adorjan P.
        • Hildmann T.
        • Piepenbrock C.
        • Quantitative D.N.A.
        methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates.
        Bioinformatics. 2004; 20: 3005-3012
        • Cawthon R.M.
        Telomere measurement by quantitative PCR.
        Nucl. Acids Res. 2002; 30: e47
        • Tibshirani R.
        Regression shrinkage and selection via the Lasso.
        J. R. Stat. Soc. B Met. 1996; 58: 267-288
        • Gentleman R.C.
        • Carey V.J.
        • Bates D.M.
        • Bolstad B.
        • Dettling M.
        • Dudoit S.
        • et al.
        Bioconductor: open software development for computational biology and bioinformatics.
        Genome Biol. 2004; 5: R80
        • Baechler E.C.
        • Batliwalla F.M.
        • Karypis G.
        • Gaffney P.M.
        • Moser K.
        • Ortmann W.A.
        • et al.
        Expression levels for many genes in human peripheral blood cells are highly sensitive to ex vivo incubation.
        Genes Immun. 2004; 5: 347-353
        • Liu J.
        • Walter E.
        • Stenger D.
        • Thach D.
        Effects of globin mRNA reduction methods on gene expression profiles from whole blood.
        J. Mol. Diagn. 2006; 8: 551-558
        • Cao J.N.
        • Gollapudi S.
        • Sharman E.H.
        • Jia Z.
        • Gupta S.
        Age-related alterations of gene expression patterns in human CD8+ T cells.
        Aging Cell. 2010; 9: 19-31
        • Eady J.J.
        • Wortley G.M.
        • Wormstone Y.M.
        • Hughes J.C.
        • Astley S.B.
        • Foxall R.J.
        • et al.
        Variation in gene expression profiles of peripheral blood mononuclear cells from healthy volunteers.
        Physiol. Genomics. 2005; 22: 402-411
        • Hong M.G.
        • Myers A.J.
        • Magnusson P.K.
        • Prince J.A.
        Transcriptome-wide assessment of human brain and lymphocyte senescence.
        PLoS One. 2008; 3: e3024
        • Zahn J.M.
        • Sonu R.
        • Vogel H.
        • Crane E.
        • Mazan-Mamczarz K.
        • Rabkin R.
        • et al.
        Transcriptional profiling of aging in human muscle reveals a common aging signature.
        PLoS Genet. 2006; 2: e115
        • Christensen B.C.
        • Houseman E.A.
        • Marsit C.J.
        • Zheng S.
        • Wrensch M.R.
        • Wiemels J.L.
        • et al.
        Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context.
        PLoS Genet. 2009; 5: e1000602
        • Thompson R.F.
        • Atzmon G.
        • Gheorghe C.
        • Liang H.Q.
        • Lowes C.
        • Greally J.M.
        • et al.
        Tissue-specific dysregulation of DNA methylation in aging.
        Aging Cell. 2010; 9: 506-518
        • Kayser M.
        • Forensic D.N.A.
        Phenotyping: predicting human appearance from crime scene material for investigative purposes.
        Forensic Sci. Int. Genet. 2015; 18: 33-48
        • Zubakov D.
        • Kokmeijer I.
        • Ralf A.
        • Rajagopalan N.
        • Calandro L.
        • Wootton S.
        • et al.
        Towards simultaneous individual and tissue identification: a proof-of-principle study on parallel sequencing of STRs, amelogenin, and mRNAs with the Ion Torrent PGM.
        Forensic Sci. Int. Genet. 2015; 17: 122-128
        • Ralf A.
        • van Oven M.
        • Zhong K.
        • Kayser M.
        Simultaneous analysis of hundreds of Y-chromosomal SNPs for high-resolution paternal lineage classification using targeted semiconductor sequencing.
        Hum. Mutat. 2015; 36: 151-159
        • Chaitanya L.
        • Ralf A.
        • van Oven M.
        • Kupiec T.
        • Chang J.
        • Lagace R.
        • et al.
        Simultaneous whole mitochondrial genome sequencing with short overlapping amplicons suitable for degraded DNA using the ion torrent personal genome machine.
        Hum. Mutat. 2015; 36: 1236-1247
        • Karlsson A.O.
        • Svensson A.
        • Marklund A.
        • Holmlund G.
        Estimating human age in forensic samples by analysis of telomere repeats.
        Forensic Sci. Int. 2008; 1: 569-571
        • Pai A.A.
        • Bell J.T.
        • Marioni J.C.
        • Pritchard J.K.
        • Gilad Y.
        A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues.
        PLoS Genet. 2011; 7: e1001316
        • Hernandez D.G.
        • Nalls M.A.
        • Gibbs J.R.
        • Arepalli S.
        • van der Brug M.
        • Chong S.
        • et al.
        Distinct DNA methylation changes highly correlated with chronological age in the human brain.
        Hum. Mol. Genet. 2011; 20: 1164-1172