Advertisement
Research paper| Volume 24, P65-74, September 2016

Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system

      Highlights

      • Methylation β-values in 3702 samples of 19–101 years analyzed with Illumina’s HumanMethylation 450 K assessed for age correlation.
      • 22 genomic regions covering 177 CpG sites studied using the Agena Bioscience EpiTYPER system in 725 Europeans.
      • 7 DNA methylation markers highest age-correlation values and compiled into a new age prediction tool using multivariate quantile regression.
      • Prediction intervals calculated from the model correctly classified 83.70% of an independent group of 52 MZ twins.
      • The age prediction model has been launched as an open-access online tool within the Snipper classification website.

      Abstract

      Individual age estimation has the potential to provide key information that could enhance and extend DNA intelligence tools. Following predictive tests for externally visible characteristics developed in recent years, prediction of age could guide police investigations and improve the assessment of age-related phenotype expression patterns such as hair colour changes and early onset of male pattern baldness. DNA methylation at CpG positions has emerged as the most promising DNA tests to ascertain the individual age of the donor of a biological contact trace. Although different methodologies are available to detect DNA methylation, EpiTYPER technology (Agena Bioscience, formerly Sequenom) provides useful characteristics that can be applied as a discovery tool in localized regions of the genome. In our study, a total of twenty-two candidate genomic regions, selected from the assessment of publically available data from the Illumina HumanMethylation 450 BeadChip, had a total of 177 CpG sites with informative methylation patterns that were subsequently investigated in detail. From the methylation analyses made, a novel age prediction model based on a multivariate quantile regression analysis was built using the seven highest age-correlated loci of ELOVL2, ASPA, PDE4C, FHL2, CCDC102B, C1orf132 and chr16:85395429. The detected methylation levels in these loci provide a median absolute age prediction error of ±3.07 years and a percentage of prediction error relative to the age of 6.3%. We report the predictive performance of the developed model using cross validation of a carefully age-graded training set of 725 European individuals and a test set of 52 monozygotic twin pairs. The multivariate quantile regression age predictor, using the CpG sites selected in this study, has been placed in the open-access Snipper forensic classification website.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kayser M.
        Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes.
        Forensic Sci. Int. Genet. 2015; 18: 33-48
        • Phillips C.
        Forensic genetic analysis of bio-geographical ancestry.
        Forensic Sci. Int. Genet. 2015; 18: 49-65
        • Walsh S.
        • Liu F.
        • Ballantyne K.N.
        • van Oven M.
        • Lao O.
        • Kayser M.
        IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information.
        Forensic Sci. Int. Genet. 2011; 5: 170-180
        • Ruiz Y.
        • Phillips C.
        • Gomez-Tato A.
        • Alvarez-Dios J.
        • Casares de Cal M.
        • Cruz R.
        • Maroñas O.
        • Söchtig J.
        • Fondevila M.
        • Rodriguez-Cid M.J.
        • Carracedo Á.
        • Lareu M.V.
        Further development of forensic eye color predictive tests.
        Forensic Sci. Int. Genet. 2013; 7: 28-40
        • Maroñas O.
        • Phillips C.
        • Söchtig J.
        • Gomez-Tato A.
        • Cruz R.
        • Alvarez-Dios J.
        • Casares de Cal M.
        • Ruiz Y.
        • Fondevila M.
        • Carracedo Á.
        • Lareu M.V.
        Development of a forensic skin colour predictive test.
        Forensic Sci. Int. Genet. 2014; 13: 34-44
        • Liu F.
        • van der Lijn F.
        • Schurmann C.
        • Zhu G.
        • Chakravarty M.M.
        • Hysi P.G.
        • Wollstein A.
        • Lao O.
        • de Bruijne M.
        • Ikram M.A.
        • van der Lugt A.
        • Rivadeneira F.
        • Uitterlinden A.G.
        • Hofman A.
        • Niessen W.J.
        • Homuth G.
        • de Zubicaray G.
        • McMahon K.L.
        • Thompson P.M.
        • Daboul A.
        • Puls R.
        • Hegenscheid K.
        • Bevan L.
        • Pausova Z.
        • Medland S.E.
        • Montgomery G.W.
        • Wright M.J.
        • Wicking C.
        • Boehringer S.
        • Spector T.D.
        • Paus T.
        • Martin N.G.
        • Biffar R.
        • Kayser M.
        A genome-wide association study identifies five loci influencing facial morphology in Europeans.
        PLoS Genet. 2012; 8: e1002932
        • Liu F.
        • Hendriks A.E.
        • Ralf A.
        • Boot A.M.
        • Benyi E.
        • Sävendahl L.
        • Oostra B.A.
        • van Duijn C.
        • Hofman A.
        • Rivadeneira F.
        • Uitterlinden A.G.
        • Drop S.L.
        • Kayser M.
        Common DNA variants predict tall stature in Europeans.
        Hum. Genet. 2014; 133: 587-597
        • Pośpiech E.
        • Karłowska-Pik J.
        • Marcińska M.
        • Abidi S.
        • Andersen J.D.
        • van den Berge M.
        • Carracedo Á.
        • Eduardoff M.
        • Freire-Aradas A.
        • Morling N.
        • Sijen T.
        • Skowron M.
        • Söchtig J.
        • Syndercombe Court D.
        • Weiler N.
        • Schneider P.M.
        • Ballard D.
        • Børsting C.
        • Parson W.
        • Phillips C.
        • Branicki W.
        EUROFORGEN-NoE Consortium, Evaluation of the predictive capacity of DNA variants associated with straight hair in Europeans.
        Forensic Sci. Int. Genet. 2015; 19: 280-288
        • Walsh S.
        • Liu F.
        • Wollstein A.
        • Kovatsi L.
        • Ralf A.
        • Kosiniak-Kamysz A.
        • Branicki W.
        • Kayser M.
        The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA.
        Forensic Sci. Int. Genet. 2013; 7: 98-115
        • Söchtig J.
        • Phillips C.
        • Maroñas O.
        • Gómez-Tato A.
        • Cruz R.
        • Alvarez-Dios J.
        • Casares de Cal M.
        • Ruiz Y.
        • Reich K.
        • Fondevila M.
        • Carracedo Á.
        • Lareu M.V.
        Exploration of SNP variants affecting hair colour prediction in Europeans.
        Int. J. Legal Med. 2015; 129: 963-975
        • Marcińska M.
        • Pośpiech E.
        • Abidi S.
        • Andersen J.D.
        • van den Berge M.
        • Carracedo Á.
        • Eduardoff M.
        • Marczakiewicz-Lustig A.
        • Morling N.
        • Sijen T.
        • Skowron M.
        • Söchtig J.
        • Syndercombe Court D.
        • Weiler; EUROFORGEN-NoE Consortium N.
        • Schneider P.M.
        • Ballard D.
        • Børsting C.
        • Parson W.
        • Phillips C.
        • Branicki W.
        Evaluation of DNA variants associated with androgenetic alopecia and their potential to predict male pattern baldness.
        PLoS One. 2015; 22: e0127852
        • Meissner C.
        • Ritz-Timme S.
        Molecular pathology and age estimation.
        Forensic Sci. Int. 2010; 15: 34-43
        • Zubakov D.
        • Liu F.
        • van Zelm M.C.
        • Vermeulen J.
        • Oostra B.A.
        • van Duijn C.M.
        • Driessen G.J.
        • van Dongen J.J.
        • Kayser M.
        • Langerak A.W.
        Estimating human age from T-cell DNA rearrangements.
        Curr. Biol. 2010; 23: R970-R971
        • Vidaki A.
        • Daniel B.
        • Syndercombe Court D.
        Forensic DNA methylation profiling–potential opportunities and challenges.
        Forensic Sci. Int. Genet. 2013; 7: 499-507
        • Zampieri M.
        • Ciccarone F.
        • Calabrese R.
        • Franceschi C.
        • Bürkle A.
        • Caiafa P.
        Reconfiguration of DNA methylation in aging.
        Mech. Ageing Dev. 2015; 151: 60-70
        • Bibikova M.
        • Barnes B.
        • Tsan C.
        • Ho V.
        • Klotzle B.
        • Le J.M.
        • Delano D.
        • Zhang L.
        • Schroth G.P.
        • Gunderson K.L.
        • Fan J.B.
        • Shen R.
        High density DNA methylation array with single CpG site resolution.
        Genomics. 2011; 98: 288-295
      1. URL: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13534 (accessed April 2016).

        • Bocklandt S.
        • Lin W.
        • Sehl M.E.
        • Sánchez F.J.
        • Sinsheimer J.S.
        • Horvath S.
        • Vilain E.
        Epigenetic predictor of age.
        PLoS One. 2011; 6: e14821
        • Hannum G.
        • Guinney J.
        • Zhao L.
        • Zhang L.
        • Hughes G.
        • Sadda S.
        • Klotzle B.
        • Bibikova M.
        • Fan J.B.
        • Gao Y.
        • Deconde R.
        • Chen M.
        • Rajapakse I.
        • Friend S.
        • Ideker T.
        • Zhang K.
        Genome-wide methylation profiles reveal quantitative views of human aging rates.
        Mol. Cell. 2013; 24: 359-367
        • Horvath S.
        DNA methylation age of human tissues and cell types.
        Genome Biol. 2013; 14: R115
        • Florath I.
        • Butterbach K.
        • Müller H.
        • Bewerunge-Hudler M.
        • Brenner H.
        Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites.
        Hum. Mol. Genet. 2014; 1: 1186-1201
        • Weidner C.I.
        • Lin Q.
        • Koch C.M.
        • Eisele L.
        • Beier F.
        • Ziegler P.
        • Bauerschlag D.O.
        • Jöckel K.H.
        • Erbel R.
        • Mühleisen T.W.
        • Zenke M.
        • Brümmendorf T.H.
        • Wagner W.
        Aging of blood can be tracked by DNA methylation changes at just three CpG sites.
        Genome Biol. 2014; 3: R24
        • Zbieć-Piekarska R.
        • Spólnicka M.
        • Kupiec T.
        • Makowska Ż.
        • Spas A.
        • Parys-Proszek A.
        • Kucharczyk K.
        • Płoski R.
        • Branicki W.
        Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science.
        Forensic Sci Int. Genet. 2015; 14: 161-167
        • Zbieć-Piekarska R.
        • Spólnicka M.
        • Kupiec T.
        • Parys-Proszek A.
        • Makowska Ż.
        • Pałeczka A.
        • Kucharczyk K.
        • Płoski R.
        • Branicki W.
        Development of a forensically useful age prediction method based on DNA methylation analysis.
        Forensic Sci Int. Genet. 2015; 17: 173-179
        • Yi S.H.
        • Xu L.C.
        • Mei K.
        • Yang R.Z.
        • Huang D.X.
        Isolation and identification of age-related DNA methylation markers for forensic age-prediction.
        Forensic Sci. Int. Genet. 2014; 11: 117-125
        • Huang Y.
        • Yan J.
        • Hou J.
        • Fu X.
        • Li L.
        • Hou Y.
        Developing a DNA methylation assay for human age prediction in blood and bloodstains.
        Forensic Sci. Int. Genet. 2015; 17: 129-136
        • Soares Bispo Santos Silva D.
        • Antunes J.
        • Balamurugan K.
        • Duncan G.
        • Sampaio Alho C.
        • McCord B.
        Evaluation of DNA methylation markers and their potential to predict human aging.
        Electrophoresis. 2015; 36: 1775-1780
        • Lee H.Y.
        • Jung S.E.
        • Oh Y.N.
        • Choi A.
        • Yang W.I.
        • Shin K.J.
        Epigenetic age signatures in the forensically relevant body fluid of semen: a preliminary study.
        Forensic Sci. Int. Genet. 2015; 19: 28-34
        • Bekaert B.
        • Kamalandua A.
        • Zapico S.C.
        • Van de Voorde W.
        • Decorte R.
        Improved age determination of blood and teeth samples using a selected set of DNA methylation markers.
        Epigenetics. 2015; 10: 922-930
      2. http://www.epidesigner.com (accessed April 2016).

        • Xu C.
        • Qu H.
        • Wang G.
        • Xie B.
        • Shi Y.
        • Yang Y.
        • Zhao Z.
        • Hu L.
        • Fang X.
        • Yan J.
        • Feng L.
        A novel strategy for forensic age prediction by DNA methylation and support vector regression model.
        Sci. Rep. 2015; 4: 17788
      3. M. Ehrich, D. Correll, D. van den Boom, Introduction to EpiTYPER for quantitative DNA methylation analysis using the MassARRAY® system, Sequenom® Application Note (2006).

      4. R.F. Thompson, J.M. Greally, Package MassArray: Analytical tools for MassArray data (2015).

      5. T. Wei, V. Simko, Package corrplot: Visualization of a Correlation Matrix (2015).

      6. R. Koenker, S. Portnoy, PT. Ng, A. Zeileis, P. Grosjean, BD. Ripley, Package quantreg: Quantile Regression (2015).

      7. A. Alfons, Package cvTools: Cross-validation tools for regression models (2015).

      8. H. Wickham, W. Chang, Package ggplot2: An Implementation of the Grammar of Graphics (2015).

        • Garagnani P.
        • Bacalini M.G.
        • Pirazzini C.
        • Gori D.
        • Giuliani C.
        • Mari D.
        • Di Blasio A.M.
        • Gentilini D.
        • Vitale G.
        • Collino S.
        • Rezzi S.
        • Castellani G.
        • Capri M.
        • Salvioli S.
        • Franceschi C.
        Methylation of ELOVL2 gene as a new epigenetic marker of age.
        Aging Cell. 2012; 11: 1132-1134
        • Park J.L.
        • Kim J.H.
        • Seo E.
        • Bae D.H.
        • Kim S.Y.
        • Lee H.C.
        • Woo K.M.
        • Kim Y.S.
        Identification and evaluation of age-correlated DNA methylation markers for forensic use.
        Forensic Sci. Int. Genet. 2016; 23: 64-70
        • Harrell F.
        Regression Modelling Strategies.
        Springer-Verlag, New York2001
        • Alisch R.S.
        • Barwick B.G.
        • Chopra P.
        • Myrick L.K.
        • Satten G.A.
        • Conneely K.N.
        • Warren S.T.
        Age-associated DNA methylation in pediatric populations.
        Genome Res. 2012; 22: 623-632
        • Heyn H.
        • Moran S.
        • Hernando-Herraez I.
        • Sayols S.
        • Gomez A.
        • Sandoval J.
        • Monk D.
        • Hata K.
        • Marques-Bonet T.
        • Wang L.
        • Esteller M.
        DNA methylation contributes to natural human variation.
        Genome Res. 2013; 23