Advertisement

Developmental validation of the Yfiler® Plus PCR Amplification Kit: An enhanced Y-STR multiplex for casework and database applications

      Highlights

      • Developmental validation following SWGDAM guidelines of the Yfiler® Plus PCR Amplification Kit.
      • 6-dye, 27-plex Y-STR kit that includes the 17 loci from the Yfiler® kit plus 10 new loci including 7 rapidly mutating Y-STRs for improved discrimination of related individuals.
      • Dual application assay designed to amplify DNA from extracted casework samples and database samples from storage cards and swab lysates via direct amplification.
      • Fast time to results with thermal cycling time under 95 min.
      • High concordance between Yfiler® Plus Kit and AmpFlSTR® Yfiler® Kit.

      Abstract

      Y-chromosomal loci have proven useful in solving investigations where low levels of male DNA are present in a high female DNA background. An intrinsic limitation of Y-STRs compared with autosomal STRs is a reduced power of discrimination due to a lack of recombination throughout most of the Y-chromosome. Thus, in an effort to increase the power of discrimination we have developed a new 6-dye, 27-plex Y-STR system that includes the 17 loci from the Yfiler® and Yfiler® Direct kits (DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635 (Y GATA C4), and Y GATA H4) plus three highly polymorphic Y-STR loci (DYS460, DYS481, and DYS533), and seven rapidly mutating Y-STR loci (DYF387S1a/b, DYS449, DYS518, DYS570, DYS576, DYS627) which allow for improved discrimination of related individuals. The Yfiler® Plus PCR Amplification Kit is a dual application assay designed to amplify DNA from extracted casework and database samples from storage cards and swab lysates via direct amplification. Compared to the Yfiler PCR Amplification Kit, the new multiplex shows increased discrimination of male lineages and also improved performance in inhibited samples, improved balance in male DNA samples mixed with female DNA at ratios >1:1000, and faster time to results. The Yfiler Plus Kit shows very high concordance to the Yfiler Kit but discordance with the PowerPlex® Y23 Kit at the DYS481 locus was observed in 2 out of 30 samples tested. This developmental validation work follows the SWGDAM guidelines and demonstrates that the assay is robust and suitable for use on forensic casework and database samples.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Butler J.M.
        Advanced Topics in Forensic DNA Typing: Interpretation.
        Elsevier, Amsterdam2015 (Print)
        • Kayser M.
        • Kruger C.
        • Nagy M.
        • Geserick G.
        • de Knijff P.
        • Roewer L.
        Y-chromosomal DNA-analysis in paternity testing: experiences and recommendations.
        Adv. Forensic Genet. 1998; 7 (7 (1997)): 494-496
        • Lim S.K.
        • Xue Y.
        • Parkin E.J.
        • Tyler-Smith C.
        Variation of 52 new Y-STR loci in the Y chromosome consortium worldwide panel of 76 diverse individuals.
        Int. J. Leg. Med. 2007; 121: 124-127
        • Vermeulen M.
        • Wollstein A.
        • van der Gaag K.
        • Lao O.
        • Xue Y.
        • Wang Q.
        • Roewer L.
        • Knoblauch H.
        • Tyler-Smith C.
        • de Knijff P.
        • Kayser M.
        Improving global and regional resolution of male lineage differentiation by simple single-copy Y-chromosomal short tandem repeat polymorphism.
        Forensic Sci. Int. Genet. 2009; 3: 205-213
        • Geppert M.
        • Edelmann J.
        • Lessig R.
        The Y-chromosomal STRs DYS481, DYS570, DYS576 and DYS643.
        Leg. Med. (Tokyo). 2009; 11: S109-S110
        • Rodig H.
        • Roewer L.
        • Gross A.
        • Richter T.
        • de Knijff P.
        • Kayser M.
        • Brabetz W.
        Evaluation of haplotype discrimination capacity of 35 Y-chromosomal short tandem repeat loci.
        Forensic Sci. Int. 2008; 174: 182-188
        • Kayser M.
        • Kittler R.
        • Erler A.
        • Hedman M.
        • Lee A.C.
        • Mohyuddin A.
        • et al.
        A comprehensive survey of human Y-chromosomal microsatellites.
        Am. J. Hum. Genet. 2004; 74: 1183-1197
        • D’Amato M.E.
        • Ehrenreich L.
        • Cloete K.
        • Benjeddou M.
        • Davison M.S.
        Characterization of the highly discriminatory loci DYS449, DYS481, DYS518, DYS612, DYS626, DYS644 and DYS710.
        Forensic Sci. Int. Genet. 2010; 4: 104-110
        • Kayser M.
        • et al.
        Evaluation of Y-chromosomal STRs: a multicenter study.
        Int. J. Leg. Med. 1997; 110: 141-149
        • Pascali V.L.
        • Dobosz M.
        • Brinkmann B.
        Coordinating Y-chromosomal STR research for the courts.
        Int. J. Leg. Med. 1999; 112: 1
        • SWGDAM
        Report on the Current Activities of the Scientific Working Group on DNA Analysis Methods Y-STR.
        • Ballantyne K.N.
        • Keerl V.
        • Wollstein A.
        • Choi Y.
        • Zuniga S.B.
        • Ralf A.
        • Vermeulen M.
        • de Knijff P.
        • Kayser M.
        A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages.
        Forensic Sci. Int. Genet. 2012; 6: 208-218
        • SWGDAM
        Validation Guidelines for DNA Analysis Methods.
        • SWGDAM
        Interpretation Guidelines for Y-Chromosome STR Typing.
      1. AmpFlSTR® Yfiler® PCR Amplification Kit: https://www.lifetechnologies.com/content/dam/LifeTech/Documents/PDFs/Y-STR/yfiler-users-manual.pdf.

      2. AmpFlSTR® Yfiler® Direct PCR Amplification Kit: https://tools.lifetechnologies.com/content/sfs/manuals/4479446B.pdf.

      3. Yfiler® Plus PCR Amplification Kit: https://tools.lifetechnologies.com/content/sfs/manuals/4485610_YfilerPlus_UG.pdf.

        • Clark J.M.
        Novel non-templated nucleotide addition reactions catalyzed by prokaryotic and eukaryotic DNA polymerases.
        Nucleic Acids Res. 1988; 16: 9677-9686
        • Akane A.
        • Matsubara K.
        • Nakamura H.
        • Takahashi S.
        • Kimura K.
        Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification.
        J. Forensic Sci. 1994; 39: 362-372
        • McNally L.
        • Shaler R.C.
        • Baird M.N.
        • De Forest P.
        • Kobilinsky L.
        Evaluation of deoxyribonucleic acid (DNA) isolated from human bloodstains exposed to ultraviolet light, heat, humidity, and soil contamination.
        J. Forensic Sci. 1989; 34: 1059-1069
        • Bender K.
        • Farfán M.J.
        • Schneider P.M.
        Preparation of degraded human DNA under controlled conditions.
        Forensic Sci. Int. 2004; 139: 135-140
        • Budowle B.
        • Aranda X.G.
        • Lagace R.E.
        • Hennessy L.K.
        • Planz J.V.
        • Manuel Rodriguez M.
        • Eisenberg A.J.
        Null allele sequence structure at the DYS448 locus and implications for profile interpretation.
        Int. J. Leg. Med. 2008; 122: 421-427
        • Viguera E.
        • Canceill D.
        • Ehrlich S.D.
        In vitro replication slippage by DNA polymerases from thermophilic organisms.
        J. Mol. Biol. 2001; 312: 323-333
        • Gill P.
        • Whitaker J.
        • Flaxman C.
        • Brown N.
        • Buckleton J.
        An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA.
        Forensic Sci. Int. 2000; 112: 17-40
        • Shinde D.
        • Lai Y.
        • Sun F.
        • Arnheim N.
        Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites.
        Nucleic Acids Res. 2003; 31: 974-980
        • Davis C.
        • Ge J.
        • Sprecher C.
        • Chidambaram A.
        • Thompson J.
        • Ewing M.
        • Fulmer P.
        • Rabbach D.
        • Storts D.
        • Budowle B.
        Protype PowerPlex® Y23 system: a concordance study.
        Forensic Sci. Int. Genet. 2013; 7: 204-208
        • Dalsgaard S.
        • Rockenbauer E.
        • Buchard A.
        • Mogensen H.S.
        • Frank-Hansen R.
        • Børsting C.
        • Morling N.
        Non-uniform phenotyping of D12S391 resolved by second generation sequencing.
        Forensic Sci. Int. Genet. 2014; 8: 195-199
        • Larmuseau M.H.
        • Vanderheyden N.
        • Van Geystelen A.
        • van Oven M.
        • de Knijff P.
        • Decorte R.
        Recent radiation within Y-chromosomal haplogroup R-M269 resulted in high Y-STR haplotype resemblance.
        Ann. Hum. Genet. 2014; 78: 92-103
        • Ballantyne K.N.
        • et al.
        Toward male individualization with rapidly mutating Y-chromosomal short tandem repeats.
        Hum. Mutat. 2014; 35: 1021-1032