Advertisement
Research paper| Volume 24, P202-210, September 2016

Download started.

Ok

Biohistorical materials and contemporary privacy concerns-the forensic case of King Albert I

      Highlights

      • Genetic identification of relic with blood stains assigned to Belgian King Albert I.
      • Identification confirms the official version on the death of King Albert I in 1934.
      • Authentication of the relic was realised using a genetic genealogy approach.
      • Publication of the genetic data would lead to privacy concerns for living relatives.
      • Procedure is proposed towards balancing public research interests & privacy issues.

      Abstract

      The rapid advancement of technology in genomic analysis increasingly allows researchers to study human biohistorical materials. Nevertheless, little attention has been paid to the privacy of the donor’s living relatives and the negative impact they might experience from the (public) availability of genetic results, even in cases of scientific, forensic or historical relevance. This issue has become clear during a cold case investigation of a relic attributed to Belgian King and World War I-hero Albert I who died, according to the official version, in a solo climbing accident in 1934. Authentication of the relic with blood stains assigned to the King and collected on the place where his body was discovered is recognised as one of the final opportunities to test the plausibility of various conspiracy theories on the King’s demise. While the historical value and current technological developments allow the genomic analysis of this relic, publication of genetic data would immediately lead to privacy concerns for living descendants and relatives of the King, including the Belgian and British royal families, even after more than 80 years. Therefore, the authentication study of the relic of King Albert I has been a difficult exercise towards balancing public research interests and privacy interests. The identification of the relic was realised by using a strict genetic genealogical approach including Y-chromosome and mitochondrial genome comparison with living relatives, thereby limiting the analysis to genomic regions relevant for identification. The genetic results combined with all available historical elements concerning the relic, provide strong evidence that King Albert I was indeed the donor of the blood stains, which is in line with the official climbing accident hypothesis and contradicts widespread ‘mise-en-scène’ scenarios. Since publication of the haploid data of the blood stains has the potential to violate the privacy of living relatives, we opted for external and independent reviewing of (the quality of) our data and statistical interpretation by external forensic experts in haploid markers to guarantee the objectivity and scientific accuracy of the identification data analysis as well as the privacy of living descendants and relatives. Although the cold case investigation provided relevant insights into the circumstances surrounding the death of King Albert I, it also revealed the insufficient ethical guidance for current genomic studies of biohistorical material.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Orlando L.
        • Gilbert M.T.P.
        • Willerslev E.
        Reconstructing ancient genomes and epigenomes.
        Nat. Rev. Genet. 2015; 16: 395-408
        • Hagelberg E.
        • Hofreiter M.
        • Keyser C.
        Ancient DNA: the first three decades.
        Philos. Trans. R. Soc. B: Biol. Sci. 2015; 370: 20130371
        • King T.E.
        • Gonzalez Fortes G.
        • Balaresque P.
        • et al.
        Identification of the remains of king Richard III.
        Nat. Commun. 2014; 5: 5631
        • Jehaes E.
        • Pfeiffer H.
        • Toprak K.
        • Decorte R.
        • Brinkmann B.
        • Cassiman J.J.
        Mitochondrial DNA analysis of the putative heart of Louis XVII, son of Louis XVI and Marie-Antoinette.
        Eur. J. Hum. Genet. 2001; 9: 185-190
        • Rasmussen M.
        • Guo X.
        • Wang Y.
        • et al.
        An Aboriginal Australian genome reveals separate human dispersals into Asia.
        Science. 2011; 334: 94-98
        • Scully J.L.
        Naming the dead: DNA-based identification of historical remains as an act of care.
        New Genet. So. 2014; 33: 313-332
        • Appel J.M.
        Privacy versus history—how far should the dead hand reach?.
        Camb. Q. Healthc. Ethics. 2012; 21: 51-63
        • Pullman D.
        • Nicholas G.P.
        Intellectual property and the ethical/legal status of human DNA: the (ir)relevance of context.
        Études/Inuit/Studies. 2011; 35: 143-164
        • Holm S.
        The privacy of Tutankhamen—utilising the genetic information in stored tissue samples.
        Theor. Med. 2001; : 22
        • Andrews L.B.
        • Buenger N.
        • Bridge J.
        • et al.
        Constructing ethical guidelines for biohistory.
        Science. 2004; 304: 215-216
        • Kaestle F.A.
        • Horsburgh K.A.
        Ancient D.N.A. in anthropology: methods, applications, and ethics.
        Yearbook Phys. Anthropol. 2002; 45: 92-130
        • Keegan J.
        The First World War.
        Hutchinson, London1998
        • de Schaepdrijver S.
        De Groote Oorlog—Het Koninkrijk België Tijdens De Eerste Wereldoorlog.
        Uitgeverij Houtekiet, 2013
        • Velaers J.
        Albert I, Koning in Tijden Van Oorlog En Crisis.
        Lannoo, Tielt, Belgium2009
        • de Grunne X.
        La Dernière Journée Du Roi Albert.
        Flambeau, Brussels1935
        • Daye P.
        Vie Et Mort d'Albert 1er.
        Grasset Bernard, 1934
        • Raskin E.
        Elisabeth Van België—Een Ongewone Koningin.
        Hautekiet, Antwerpen2005
        • Van Ypersele L.
        Le Roi Albert: Histoire d'un Mythe.
        Editions Labor, 2006
        • Noterman J.
        De Val Van Albert I.
        Van Halewyck Leuven, Belgium2004
        • Schellinck G.
        Het Wonderbare Leven Van Leonie Van Den Dijck.
        Komiteit te Onkerzele, Onkerzele Belgium1972
        • Gérard J.
        Albert Ier Assassiné.
        in Le Nouvel Europe Magazine, Brussels1973
        • Bogaerts W.
        Mijn Koninklijke Minnaar.
        VBK—Houtekiet, 2015
        • Wonder A.Y.
        Bloodstain patterns identification, interpretation and application.
        Elsevier Sci. 2014;
        • Tonet E.
        La Verité Sur La Mort Du Roi Albert.
        Cercle d'histoire régionale En Fagne et Tierache, Brussels1977
        • Bacchi U.
        Belgium king Albert's ‘disowned natural daughter' delphine boel seeks recognition in court.
        Int. Bus. Times. 2013;
        • Butler J.M.
        Advanced Topics in Forensic DNA Typing: Methodology.
        Elsevier Inc., London2012
        • Larmuseau M.H.D.
        • Delorme P.
        • Germain P.
        • et al.
        Genetic genealogy reveals true Y halogroup of house of Bourbon contradicting recent identification of the presumed remains of two French kings.
        Eur. J. Hum. Genet. 2014; 22: 681-687
        • Green R.C.
        • Annas G.J.
        The genetic privacy of presidential candidates.
        N. Engl. J. Med. 2008; 359: 2192-2193
      1. Masterton M., Helgesson G., Höglund A.T., Hansson M.G., Queen Christina's moral claim on the living: justification of a tenacious moral intuition. 2007; 10: 321–327.

        • Joh E.E.
        DNA theft: recognizing the crime of nonconsensual genetic collection and testing.
        Boston Univ. Law Rev. 2011; 91: 665-700
      2. Burnay P., La correspondance de guerre 1914–1918 d'Henri de Thier, Officier du 1er régiment de Lanciers. Solidarités dans la Grande Guerre, 2008, UCL: Louvain-la-Neuve.

      3. Burnay P., La correspondance d'Henri et de Marthe de Thier, de la Belle Epoque à la Grande Guerre, In prep.

        • Van Steendam K.
        • De Ceuleneer M.
        • Dhaenens M.
        • Van Hoofstat D.
        • Deforce D.
        Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science.
        Int. J. Legal Med. 2013; 127: 287-298
        • Cooper A.
        • Poinar H.N.
        Ancient DNA Do it right or not at all.
        Science. 2000; 289: 1139
        • Hofreiter M.
        • Serre D.
        • Poinar H.N.
        • Kuch M.
        • Paabo S.
        DNA ancient.
        Nat. Rev. Genet. 2001; 2: 353-359
        • Paabo S.
        • Poinar H.
        • Serre D.
        • et al.
        Genetic analyses from ancient DNA.
        Annu. Rev. Genet. 2004; 38: 645-679
        • Ottoni C.
        • Ricaut F.-X.
        • Vanderheyden N.
        • Brucato N.
        • Waelkens M.
        • Decorte R.
        Mitochondrial analysis of a Byzantine population reveals the differential impact of multiple historical events in South Anatolia.
        Eur. J. Hum. Genet. 2011; 19: 571-576
        • Weichhold G.M.
        • Bark J.E.
        • Korte W.
        • Eisenmenger W.
        • Sullivan K.M.
        DNA analysis in the case of Kaspar Hauser.
        Int. J. Legal Med. 1998; 111: 287-291
        • Bekaert B.
        Chapter 14, in Forensic DNA Typing Protocols.
        in: Goodwin W. Springer Press, 2016
        • Maricic T.
        • Whitten M.
        • Paabo S.
        Multiplexed DNA sequence capture of mitochondrial genomes using PCR products.
        PLoS One. 2010; 5: e14004
        • Larmuseau M.H.D.
        • Vanoverbeke J.
        • Gielis G.
        • Vanderheyden N.
        • Larmuseau H.F.M.
        • Decorte R.
        In the name of the migrant father—analysis of surname origin identifies historic admixture events undetectable from genealogical records.
        Heredity. 2012; 109: 90-95
        • Larmuseau M.H.D.
        • Vanderheyden N.
        • Jacobs M.
        • Coomans M.
        • Larno L.
        • Decorte R.
        Micro-geographic distribution of Y-chromosomal variation in the central-western European region Brabant.
        Forensic Sci. Int.-Genet. 2011; 5: 95-99
        • Thompson J.M.
        • Ewing M.M.
        • Frank W.E.
        • et al.
        Developmental validation of the powerPlex (R) Y23 system: a single multiplex Y-STR analysis system for casework and database samples.
        Forensic Sci. Int.-Genet. 2013; 7: 240-250
        • Purps J.
        • Siegert S.
        • Willuweit S.
        • et al.
        A global analysis of Y-chromosomal haplotype diversity for 23 STR loci.
        Forensic Sci. Int.-Genet. 2014; 12: 12-23
        • Ballantyne K.N.
        • Goedbloed M.
        • Fang R.X.
        • et al.
        Mutability of Y-chromosomal microsatellites: rates, characteristics, molecular bases, and forensic implications.
        Am. J. Hum. Genet. 2010; 87: 341-353
        • Walsh B.
        Estimating the time to the most recent common ancestor for the Y chromosome or mitochondrial DNA for a pair of individuals.
        Genetics. 2001; 158: 897-912
        • Athey W.T.
        Haplogroup prediction from Y-STR values using an allele-frequency approach.
        J. Genet. Geneal. 2005; 1: 1-7
        • Athey W.T.
        Haplogroup prediction from Y-STR values using a Bayesian-allele-frequency approach.
        J. Genet. Geneal. 2006; 2: 34-39
        • van Oven M.
        • Van Geystelen A.
        • Kayser M.
        • Decorte R.
        • Larmuseau M.H.D.
        Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome.
        Hum. Mutat. 2014; 35: 187-191
        • Larmuseau M.H.D.
        • Ottoni C.
        • Raeymaekers J.A.M.
        • Vanderheyden N.
        • Larmuseau H.F.M.
        • Decorte R.
        Temporal differentiation across a West-European Y-chromosomal cline—genealogy as a tool in human population genetics.
        Eur. J. Hum. Genet. 2012; 20: 434-440
        • Parson W.
        • Dür A.
        EMPOP-a forensic mtDNA database.
        Forensic Sci. Int.-Genet. 2007; 1: 88-92
        • Larmuseau M.H.D.
        • Van Geystelen A.
        • Kayser M.
        • van Oven M.
        • Decorte R.
        Towards a consensus Y-chromosomal phylogeny and Y-SNP set in forensics in the next-generation sequencing era.
        Forensic Sci.Int.-Genet. 2015; 15: 39-42
        • Larmuseau M.H.D.
        • Boon N.A.M.
        • Vanderheyden N.
        High Y chromosomal diversity and low relatedness between paternal lineages on a communal scale in the Western European low countries during the surname establishment.
        Heredity. 2015; 115: 3-12
        • Larmuseau M.H.D.
        • Vanderheyden N.
        • Van Geystelen A.
        • van Oven M.
        • Kayser M.
        • Decorte R.
        Increasing phylogenetic resolution still informative for Y chromosomal studies on West-European populations.
        Forensic Sci. Int.-Genet. 2014; 9: 179-185
        • Willuweit S.
        • Roewer L.
        Y chromosome haplotype reference database (YHRD): update.
        Forensic Sci. Int.-Genet. 2007; 1: 83-87
        • Oliver J.
        • Wood T.
        Conspiracy theories and the paranoid style(s) of mass opinion.
        Am. J. Political Sci. 2014; 58: 952-966
        • Oliver J.E.
        • Wood T.
        Medical conspiracy theories and health behaviors in the United States.
        JAMA Intern. Med. 2014; 174: 817-818
        • Kaufmann I.M.
        • Rühli F.J.
        Without ‘informed consent'? Ethics and ancient mummy research.
        J. Med. Ethics. 2010; 36: 608-6013
        • Gymrek M.
        • McGuire A.L.
        • Golan D.
        • Halperin E.
        • Erlich Y.
        Identifying personal genomes by surname inference.
        Science. 2013; 339: 321-324
        • Erlich Y.
        • Narayanan A.
        Routes for breaching and protecting genetic privacy.
        Nat. Rev. Genet. 2014; 15: 409-421
        • Claes P.
        • Liberton D.K.
        • Daniels K.
        • et al.
        Modeling 3D facial shape from DNA.
        PLoS Genet. 2014; 10: e1004224
        • Walsh S.
        • Liu F.
        • Wollstein A.
        • et al.
        The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA.
        Forensic Sci. Int.-Genet. 2013; 7: 98-115
        • Fortes G.G.
        • Speller C.F.
        • Hofreiter M.
        • King T.E.
        Phenotypes from ancient DNA: approaches, insights and prospects.
        Bioessays. 2014; 35: 690-695
        • Lalueza-Fox C.
        • Gigli E.
        • Bini C.
        • et al.
        Genetic analysis of the presumptive blood from Louis XVI, king of France.
        Forensic Sci. Int.-Genet. 2011; 5: 459-463
        • Rogaev E.I.
        • Grigorenko A.P.
        • Moliaka Y.K.
        • et al.
        Genomic identification in the historical case of the Nicholas II royal family.
        Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 5258-5263
        • Larmuseau M.H.D.
        • Vanoverbeke J.
        • Van Geystelen A.
        • et al.
        Low historical rates of cuckoldry in a Western European human population traced by Y-chromosome and genealogical data.
        Proc. R. Soc. B. 2013; 280: 20132400
      4. M.H.D. Larmuseau, K. Matthijs, T. Wenseleers, Cuckolded fathers rare in human populations Trends in Ecology and Evolution in press.

        • Butler J.M.
        The future of forensic DNA analysis.
        Philos. Trans. R Soc. B: Biol. Sci. 2015; 370: 20140252