Advertisement

Differences in urbanization degree and consequences on the diversity of conventional vs. rapidly mutating Y-STRs in five municipalities from a small region of the Tyrolean Alps in Austria

      Highlights

      • 551 samples of five nearby places differing in size and connection were analyzed.
      • The share of inferred male relatives was inversely related to urbanization degree.
      • Y-chromosomal markers provided genetic evidence for male population sub-structuring.
      • A set of 13 RM Y-STRs featured superior lineage resolution to the 17 Yfiler markers.
      • This gain in male lineage resolution decreased with increasing urbanization degree.

      Abstract

      In this study we set out to test at a micro-geographic scale for the potential effects of differences in urbanization degree on Y-chromosomal diversity and the paternal lineage differentiation of “conventional” and rapidly-mutating (RM) Y-STR markers. To avoid systematic underrepresentation of common lineages, 551 male samples were collected under a sampling regime allowing for the inclusion of paternal relatives. All participants came from a small, topographically highly structured, yet culturally homogeneous settlement area in the Tyrolean Alps of Austria, a region that is characterized by a longstanding coexistence of communities differing considerably in size and connection. The study participants reported provenance in one of the three rural villages Alpbach, Brandenberg, and Wildschönau – all being separated by topographical barriers from each other – or in one of the two more urban-like and better connected municipalities Kitzbühel and St. Johann in Tirol. When compared with the sample pools from the two larger communities, the three small villages showed distinctly higher rates of self-reported patrilocality since the paternal grandfather (85–95% vs. ∼42%), and featured evidence for a considerably higher proportion of close and cryptic paternal relationships among the study participants. We observed marked differences in the Y-SNP haplogroup frequency spectra and statistically significant Y-STR-based FST distances among the municipality samples, suggesting population sub-structuring along municipality borders. While for the two larger settlements a widely used “core” set of 17 conventional Y-STRs (Yfiler) provided reasonably high lineage resolution (Ĥ: 0.99515 ± 0.00256, 0.99739 ± 0.00224), a markedly reduced haplotype diversity was seen in samples from the rural villages (Ĥ: 0.96126 ± 0.00701–0.98515 ± 0.00278). This difference largely diminished when instead using a set of 13 RM Y-STRs (Ĥ: 0.99180 ± 0.00380–0.99922 ± 0.00187, for all groups). Most notably, in the Alpbach sample the number of different haplotypes rose from 42 (Yfiler) to 99 (RM Y-STRs) and the proportion of matching haplotypes dropped from nearly 4% (Yfiler) to about 0.4% (RM Y-STRs) of the pairwise comparisons. Consistent results were obtained with a reduced version of the dataset, being devoid of inferred close male relatives up to the degree of first cousins. Finally, consequences potentially arising from a gain in lineage-resolution for population reference-sample size requirements will be addressed briefly.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Coia V.
        • Capocasa M.
        • Anagnostou P.
        • et al.
        Demographic histories, isolation and social factors as determinants of the genetic structure of alpine linguistic groups.
        PLoS ONE. 2013; 8: e81704
        • Marks S.J.
        • Levy H.
        • Martinez-Cadenas C.
        • Montinaro F.
        • Capelli C.
        Migration distance rather than migration rate explains genetic diversity in human patrilocal groups.
        Mol. Ecol. 2012; 21: 4958-4969
        • Mantl E.
        Heirat als Privileg Obrigkeitliche Heiratsbeschränkungen in Tirol und Vorarlberg 1820 bis 1920.
        Verlag für Geschichte und Politik, Wien1997
        • Ballantyne K.N.
        • Ralf A.
        • Aboukhalid R.
        • et al.
        Toward male individualization with rapidly mutating Y-chromosomal short tandem repeats.
        Hum. Mutat. 2014; 35: 1021-1032
        • Skaletsky H.
        • Kuroda-Kawaguchi T.
        • Minx P.J.
        • et al.
        The male-specific region on the human Y chromosome is a mosaic of discrete sequence classes.
        Nature. 2003; 423: 825-837
        • Ballantyne K.N.
        • Goedbloed M.
        • Fang R.
        • et al.
        Mutability of Y-chromosomal microsatellites: rates, characteristics, molecular bases, and forensic implications.
        Am. J. Hum. Genet. 2010; 87: 341-353
        • Ballantyne K.N.
        • Keerl V.
        • Wollstein A.
        • Choi Y.
        • Zuniga S.B.
        • Ralf A.
        • Vermeulen M.
        • de Knijff P.
        • Kayser M.
        A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages.
        Forensic Sci. Int. Genet. 2012; 6: 208-218
        • Niederstätter H.
        • Berger B.
        • Erhart D.
        • Willuweit S.
        • Geppert M.
        • Gassner C.
        • Schennach H.
        • Parson W.
        • Roewer L.
        Multiple recurrent mutations at four human Y-chromosomal single nucleotide polymorphism sites in a 37 bp sequence tract on the ARSDP1 pseudogene.
        Forensic Sci. Int. Genet. 2013; 7: 593-600
        • Core Team R.
        R: A Language and Environment for Statistical Computing.
        R Foundation for Statistical Computing, Vienna, Austria2016
        • van Oven M.
        • Van Geystelen A.
        • Kayser M.
        • Decorte R.
        • Larmuseau M.H.
        Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome.
        Hum. Mutat. 2014; 35: 187-191
        • The Y Chromosome Consortium
        A nomenclature system for the tree of human Y-chromosomal binary haplogroups.
        Genome Res. 2002; 12: 339-348
        • Niederstätter H.
        • Rampl G.
        • Erhart D.
        • Pitterl F.
        • Oberacher H.
        • Neuhuber F.
        • Hausner I.
        • Gassner C.
        • Schennach H.
        • Berger B.
        • Parson W.
        Pasture names with Romance and Slavic roots facilitate dissection of Y chromosome variation in an exclusively German-speaking alpine region.
        PLoS ONE. 2012; 7: e41885
        • Trombetta B.
        • Sellitto D.
        • Scozzari R.
        • Cruciani F.
        Inter- and intraspecies phylogenetic analyses reveal extensive X-Y gene conversion in the evolution of gametologous sequences of human sex chromosomes.
        Mol. Biol. Evol. 2014; 31: 2108-2123
        • Berger B.
        • Niederstätter H.
        • Erhart D.
        • Gassner C.
        • Schennach H.
        • Parson W.
        High resolution mapping of Y haplogroup G in Tyrol (Austria).
        Forensic Sci. Int. Genet. 2013; 7: 529-536
        • Mulero J.J.
        • Chang C.W.
        • Calandro L.M.
        • Green R.L.
        • Li Y.
        • Johnson C.L.
        • Hennessy L.K.
        Development and validation of the AmpFlSTR Yfiler PCR amplification kit: a male specific single amplification 17 Y-STR multiplex system.
        J. Forensic Sci. 2006; 51: 64-75
        • de Knijff P.
        • Kayser M.
        • Caglia A.
        • et al.
        Chromosome Y microsatellites: population genetic and evolutionary aspects.
        Int. J. Legal Med. 1997; 110: 134-149
        • Roewer L.
        • Krawczak M.
        • Willuweit S.
        • et al.
        Online reference database of European Y-chromosomal short tandem repeat (STR) haplotypes.
        Forensic Sci. Int. 2001; 118: 106-113
        • Gusmão L.
        • Butler J.M.
        • Carracedo A.
        • Gill P.
        • Kayser M.
        • Mayr W.R.
        • Morling N.
        • Prinz M.
        • Roewer L.
        • Tyler-Smith C.
        • Schneider P.M.
        DNA commission of the International Society for Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis.
        Int. J. Legal Med. 2006; 120: 191-200
        • Excoffier L.
        • Lischer H.E.L.
        Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.
        Mol. Ecol. Resour. 2010; 10: 564-567
      1. D. Kahle, H. Wickham, ggmap. a package for spatial visualization with Google Maps and OpenStreetMap, R package version 2.3., (2013), http://goo.gl/CS56q7

        • Willuweit S.
        • Roewer L.
        The new Y Chromosome Haplotype Reference Database.
        Forensic Sci. Int. Genet. 2015; 15: 43-48
        • Sanders H.
        Marine benthic diversity: a comparative study.
        Am. Nat. 1968; : 243-282
        • Hurlbert S.H.
        The nonconcept of species diversity: a critique and alternative parameters.
        Ecology. 1971; 52: 577-586
        • Chao A.
        • Gotelli N.J.
        • Hsieh T.C.
        • Sander E.L.
        • Ma K.H.
        • Colwell R.K.
        • Ellison A.M.
        Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies.
        Ecol. Monogr. 2014; 84: 45-67
      2. T.C. Hsieh, K.H., Ma, A. Chao, iNEXT: interpolation and extrapolation for species diversity, 2014, R package version 2.0, http://goo.gl/18u7FS.

        • Chao A.
        • Jost L.
        Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size.
        Ecology. 2012; 93: 2533-2547
        • Nei M.
        Molecular Evolutionary Genetics.
        Columbia University Press, New York1987
        • Hardy O.J.
        • Charbonnel N.
        • Fréville H.
        • Heuertz M.
        Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation.
        Genetics. 2003; 163: 1467-1482
        • Hardy O.J.
        • Vekemans X.
        SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels.
        Mol. Ecol. Notes. 2002; 2: 618-620
        • Peakall R.
        • Smouse P.E.
        GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update.
        Bioinformatics. 2012; 28: 2537-2539
        • Benjamini Y.
        • Yekutieli D.
        The control of false discovery rate under dependency.
        Ann. Stat. 2001; 29: 1165-1188
        • Clopper C.
        • Pearson E.S.
        The use of confidence or fiducial limits illustrated in the case of the binomial.
        Biometrika. 1934; 26: 404-413
        • Slatkin M.
        A measure of population subdivision based on microsatellite allele frequencies.
        Genetics. 1995; 139: 457-462
        • Ellegren H.
        Microsatellites: simple sequences with complex evolution.
        Nat. Rev. Genet. 2004; 5: 435-445
        • Westen A.A.
        • Kraaijenbrink T.
        • Clarisse L.
        • et al.
        Analysis of 36 Y-STR marker units including a concordance study among 2085 Dutch males.
        Forensic Sci. Int. Genet. 2015; 14: 174-181
        • Purps J.
        • Siegert S.
        • Willuweit S.
        • et al.
        A global analysis of Y-chromosomal haplotype diversity for 23 STR loci.
        Forensic Sci. Int. Genet. 2014; 12: 12-23
        • Robino C.
        • Ralf A.
        • Pasino S.
        • et al.
        Development of an Italian RM Y-STR haplotype database: results of the 2013 GEFI collaborative exercise.
        Forensic Sci. Int. Genet. 2015; 15: 56-63
        • Rogalla U.
        • Woźniak M.
        • Swobodziński J.
        • Derenko M.
        • Malyarchuk B.A.
        • Dambueva I.
        • Koziński M.
        • Kubica J.
        • Grzybowski T.
        A novel multiplex assay amplifying 13 Y-STRs characterized by rapid and moderate mutation rate.
        Forensic Sci Int Genet. 2015; 15: 49-55
        • Olofsson J.K.
        • Mogensen H.S.
        • Buchard A.
        • Børsting C.
        • Morling N.
        Forensic and population genetic analyses of Danes: Greenlanders and Somalis typed with the Yfiler® Plus PCR amplification kit.
        Forensic Sci Int Genet. 2015; 16: 232-236
        • Pickrahn I.
        • Müller E.
        • Zahrer W.
        • Dunkelmann B.
        • Cemper-Kiesslich J.
        • Kreindl G.
        • Neuhuber F.
        Yfiler® Plus amplification kit validation and calculation of forensic parameters for two Austrian populations.
        Forensic Sci. Int. Genet. 2016; 21: 90-94
        • Rapone C.
        • D’Atanasio E.
        • Agostino A.
        • Mariano M.
        • Papaluca M.T.
        • Cruciani F.
        • Berti A.
        Forensic genetic value of a 27 Y-STR loci multiplex (Yfiler® Plus kit) in an Italian population sample.
        Forensic Sci. Int. Genet. 2015; 21: e1-e5