Advertisement
Research Article| Volume 25, P1-9, November 2016

Hairy matters: MtDNA quantity and sequence variation along and among human head hairs

      Highlights

      • Hair mtDNA quantity and CR variation is extremely heterogeneous between individuals.
      • Hairs of one donor/fragments of one hair can yield slightly different CR sequences.
      • Current forensic interpretation guidelines are rarely violated.
      • Affected nps are individual and rare or hypervariable also in other tissues.
      • No hair specific mtDNA variation patterns have been detected.

      Abstract

      Hairs from the same donor have been found to differ in mtDNA sequence within and among themselves and from other tissues, which impacts interpretation of results obtained in a forensic setting. However, little is known on the magnitude of this phenomenon and published data on systematic studies are scarce. We addressed this issue by generating mtDNA control region (CR) profiles of >450 hair fragments from 21 donors by Sanger-type sequencing (STS). To mirror forensic scenarios, we compared hair haplotypes from the same donors to each other, to the corresponding buccal swab reference haplotypes and analyzed several fragments of individual hairs. We also investigated the effects of hair color, donor sex and age, mtDNA haplogroup and chemical treatment on mtDNA quantity, amplification success and variation. We observed a wide range of individual CR sequence variation. The reference haplotype was the only or most common (≥75%) hair haplotype for most donors. However, in two individuals, the reference haplotype was only found in about a third of the investigated hairs, mainly due to differences at highly variable positions. Similarly, most hairs revealed the reference haplotype along their entire length, however, about a fifth of the hairs contained up to 71% of segments with deviant haplotypes, independent of the longitudinal position. Variation affected numerous positions, typically restricted to the individual hair and in most cases heteroplasmic, but also fixed (i.e. homoplasmic) substitutions were observed. While existing forensic mtDNA interpretation guidelines were found still sufficient for all comparisons to reference haplotypes, some comparisons between hairs from the same donor could yield false exclusions when those guidelines are strictly followed. This study pinpoints the special care required when interpreting mtDNA results from hair in forensic casework.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Linch C.A.
        • Smith S.L.
        • Prahlow J.A.
        Evaluation of the human hair root for DNA typing subsequent to microscopic comparison.
        J. Forensic Sci. 1998; 43: 305-314
        • Melton T.
        • Nelson K.
        Forensic mitochondrial DNA analysis: two years of commercial casework experience in the United States.
        Croat. Med. J. 2001; 42: 298-303
        • Allen M.
        • Engstrom A.S.
        • Meyers S.
        • Handt O.
        • Saldeen T.
        • von Haeseler A.
        • Pääbo S.
        • Gyllensten U.
        Mitochondrial DNA sequencing of shed hairs and saliva on robbery caps: sensitivity and matching probabilities.
        J. Forensic Sci. 1998; 43: 453-464
        • Alonso A.
        • Salas A.
        • Albarran C.
        • Arroyo E.
        • Castro A.
        • Crespillo M.
        • di Lonardo A.M.
        • Lareu M.V.
        • Cubria C.L.
        • Soto M.L.
        • Lorente J.A.
        • Semper M.M.
        • Palacio A.
        • Paredes M.
        • Pereira L.
        • Lezaun A.P.
        • Brito J.P.
        • Sala A.
        • Vide M.C.
        • Whittle M.
        • Yunis J.J.
        • Gomez J.
        Results of the 1999–2000 collaborative exercise and proficiency testing program on mitochondrial DNA of the GEP-ISFG: an inter-laboratory study of the observed variability in the heteroplasmy level of hair from the same donor.
        Forensic Sci. Int. 2002; 125: 1-7
        • Nilsson M.
        • Norlin S.
        • Allen M.
        Sequencing of mtDNA in shed hairs: a retrospective analysis of material from forensic cases and a pre-screening method.
        Open Forensic Sci. J. 2012; 5: 13-22
        • Sullivan K.M.
        • Alliston-Greiner R.
        • Archampong F.I.A.
        • Piercy R.
        • Tully G.
        • Gill P.
        • Lloyd-Davies C.
        A single difference in mtDNA control region sequence observed between hair shaft and reference samples from a single donor.
        in: Proceedings from the 7th International Symposium on Human Identification 1996, Promega Corporation, Madison, WI, USA1997: 126-130
        • Linch C.A.
        • Whiting D.A.
        • Holland M.M.
        Human hair histogenesis for the mitochondrial DNA forensic scientist.
        J. Forensic Sci. 2001; 46: 844-853
        • Rowe W.F.
        The current status of microscopical hair comparisons.
        Sci. World J. 2001; 1: 868-878
        • Melton T.
        • Dimick G.
        • Higgins B.
        • Lindstrom L.
        • Nelson K.
        Forensic mitochondrial DNA analysis of 691 casework hairs.
        J. Forensic Sci. 2005; 50: 73-80
        • Szabo S.
        • Jaeger K.
        • Fischer H.
        • Tschachler E.
        • Parson W.
        • Eckhart L.
        In situ labeling of DNA reveals interindividual variation in nuclear DNA breakdown in hair and may be useful to predict success of forensic genotyping of hair.
        Int. J. Legal Med. 2012; 126: 63-70
        • Bengtsson C.F.
        • Olsen M.E.
        • Brandt L.O.
        • Bertelsen M.F.
        • Willerslev E.
        • Tobin D.J.
        • Wilson A.S.
        • Gilbert M.T.
        DNA from keratinous tissue. Part I: hair and nail.
        Ann. Anat. 2012; 194: 17-25
        • Higuchi R.
        • von Beroldingen C.H.
        • Sensabaugh G.F.
        • Erlich H.A.
        DNA typing from single hairs.
        Nature. 1988; 332: 543-546
        • Jehaes E.
        • Toprak K.
        • Vanderheyden N.
        • Pfeiffer H.
        • Cassiman J.J.
        • Brinkmann B.
        • Decorte R.
        Pitfalls in the analysis of mitochondrial DNA from ancient specimens and the consequences for forensic DNA analysis: the historical case of the putative heart of Louis XVII.
        Int. J. Legal Med. 2001; 115: 135-141
        • Linch C.A.
        Degeneration of nuclei and mitochondria in human hairs.
        J. Forensic Sci. 2009; 54: 346-349
        • Bourguignon L.
        • Hoste B.
        • Boonen T.
        • Vits K.
        • Hubrecht F.
        A fluorescent microscopy-screening test for efficient STR-typing of telogen hair roots.
        Forensic Sci. Int.-Genet. 2008; 3: 27-31
        • McNevin D.
        • Wilson-Wilde L.
        • Robertson J.
        • Kyd J.
        • Lennard C.
        Short tandem repeat (STR) genotyping of keratinised hair. Part 2. An optimised genomic DNA extraction procedure reveals donor dependence of STR profiles.
        Forensic Sci. Int. 2005; 153: 247-259
        • Amory S.
        • Keyser C.
        • Crubezy E.
        • Ludes B.
        STR typing of ancient DNA extracted from hair shafts of Siberian mummies.
        Forensic Sci. Int. 2007; 166: 218-229
        • Muller K.
        • Klein R.
        • Miltner E.
        • Wiegand P.
        Improved STR typing of telogen hair root and hair shaft DNA.
        Electrophoresis. 2007; 28: 2835-2842
        • Pfeiffer H.
        • Huhne J.
        • Ortmann C.
        • Waterkamp K.
        • Brinkmann B.
        Mitochondrial DNA typing from human axillary, pubic and head hair shafts–success rates and sequence comparisons.
        Int. J. Legal Med. 1999; 112: 287-290
        • Melton T.
        Mitochondrial DNA heteroplasmy.
        Forensic Sci. Rev. 2004; 16: 1-20
        • Wolinsky H.
        History in a single hair.
        EMBO Rep. 2010; 11: 427-430
        • Prieto L.
        • Montesino M.
        • Salas A.
        • Alonso A.
        • Albarrán C.
        • Álvarez S.
        • Crespillo M.
        • Di Lonardo A.M.
        • Doutremepuich C.
        • Fernández-Fernández I.
        • de la Vega A.G.
        • Gusmão L.
        • López C.M.
        • López-Soto M.
        • Lorente J.A.
        • Malaghini M.
        • Martı́nez C.A.
        • Modesti N.M.
        • Palacio A.M.
        • Paredes M.
        • Pena S.D.J.
        • Pérez-Lezaun A.
        • Pestano J.J.
        • Puente J.
        • Sala A.
        • Vide M.C.
        • Whittle M.R.
        • Yunis J.J.
        • Gómez J.
        The 2000–2001 GEP–ISFG collaborative exercise on mtDNA: assessing the cause of unsuccessful mtDNA PCR amplification of hair shaft samples.
        Forensic Sci. Int. 2003; 134: 46-53
        • Melton T.
        • Dimick G.
        • Higgins B.
        • Yon M.
        • Holland C.
        Mitochondrial DNA analysis of 114 hairs measuring less than 1 cm from a 19-year-old homicide.
        Invest. Genet. 2012; 3: 12
        • Köhnemann S.
        • Pennekamp P.
        • Schmidt P.F.
        • Pfeiffer H.
        qPCR and mtDNA SNP analysis of experimentally degraded hair samples and its application in forensic casework.
        Int. J. Legal Med. 2010; 124: 337-342
        • Gilbert M.T.
        • Wilson A.S.
        • Bunce M.
        • Hansen A.J.
        • Willerslev E.
        • Shapiro B.
        • Higham T.F.
        • Richards M.P.
        • O'Connell T.C.
        • Tobin D.J.
        • Janaway R.C.
        • Cooper A.
        Ancient mitochondrial DNA from hair.
        Curr. Biol. 2004; 14: R463-464
        • Berger C.
        • Parson W.
        Mini-midi-mito: adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples.
        Forensic Sci. Int. Genet. 2009; 3: 149-153
        • Gilbert M.T.
        • Janaway R.C.
        • Tobin D.J.
        • Cooper A.
        • Wilson A.S.
        Histological correlates of post mortem mitochondrial DNA damage in degraded hair.
        Forensic Sci. Int. 2006; 156: 201-207
        • Gilbert M.T.
        • Menez L.
        • Janaway R.C.
        • Tobin D.J.
        • Cooper A.
        • Wilson A.S.
        Resistance of degraded hair shafts to contaminant DNA.
        Forensic Sci. Int. 2006; 156: 208-212
        • Vigilant L.
        • Pennington R.
        • Harpending H.
        • Kocher T.D.
        • Wilson A.C.
        Mitochondrial-DNA sequences in single hairs from a southern african population.
        Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 9350-9354
        • Thomson D.M.
        • Brown N.N.
        • Clague A.E.
        Routine use of hair root or buccal swab specimens for pcr analysis–advantages over using blood.
        Clin. Chim. Acta. 1992; 207: 169-174
        • Hopgood R.
        • Sullivan K.M.
        • Gill P.
        Strategies for automated sequencing of human mitochondrial-DNA directly from PCR products.
        Biotechniques. 1992; 13: 82-92
        • Wilson M.R.
        • DiZinno J.A.
        • Polanskey D.
        • Replogle J.
        • Budowle B.
        Validation of mitochondrial DNA sequencing for forensic casework analysis.
        Int. J. Legal Med. 1995; 108: 68-74
        • Wilson M.R.
        • Polanskey D.
        • Butler J.
        • DiZinno J.A.
        • Replogle J.
        • Budowle B.
        Extraction, PCR amplification and sequencing of mitochondrial DNA from human hair shafts.
        Biotechniques. 1995; 18: 662-669
        • Decorte R.
        • Jehaes E.
        • Xiao F.-X.
        • Cassiman J.-J.
        Genetic analysis of single hair shafts by automated sequence analysis of the mitochondrial D-loop region.
        Advances in Forensic Haemogenetics. 6. Springer, Berlin1995: 17-19
        • Parson W.
        • Parsons T.J.
        • Scheithauer R.
        • Holland M.M.
        Population data for 101 Austrian Caucasian mitochondrial DNA D-loop sequences: application of mtDNA sequence analysis to a forensic case.
        Int. J. Legal Med. 1998; 111: 124-132
        • Davis C.L.
        Mitochondrial DNA: State of Tennessee v. Paul Ware.
        Profiles in DNA. 1998; 1: 6-7
        • Kotsimbos N.
        • Jean-Francois M.J.B.
        • Huizing M.
        • Kapsa R.M.I.
        • Lertrit P.
        • Siregar N.C.
        • Marzuki S.
        • Sue C.
        • Byrne E.
        Rapid and noninvasive screening of patients with mitochondrial myopathy.
        Hum. Mutat. 1994; 4: 132-135
        • Hao H.L.
        • Bonilla E.
        • Manfredi G.
        • Dimauro S.
        • Moraes C.T.
        Segregation patterns of a novel mutation in the mitochondrial transfer-RNA glutamic-acid gene associated with myopathy and diabetes-mellitus.
        Am. J. Hum. Genet. 1995; 56: 1017-1025
        • Comas D.
        • Pääbo S.
        • Bertranpetit J.
        Heteroplasmy in the control region of human mitochondrial DNA.
        Genome Res. 1995; 5: 89-90
        • Tully G.
        • Barritt S.M.
        • Bender K.
        • Brignon E.
        • Capelli C.
        • Dimo-Simonin N.
        • Eichmann C.
        • Ernst C.M.
        • Lambert C.
        • Lareu M.V.
        • Ludes B.
        • Mevag B.
        • Parson W.
        • Pfeiffer H.
        • Salas A.
        • Schneider P.M.
        • Staalstrom E.
        Results of a collaborative study of the EDNAP group regarding mitochondrial DNA heteroplasmy and segregation in hair shafts.
        Forensic Sci. Int. 2004; 140: 1-11
        • Bendall K.E.
        • Macaulay V.A.
        • Sykes B.C.
        Variable levels of a heteroplasmic point mutation in individual hair roots.
        Am. J. Hum. Genet. 1997; 61: 1303-1308
        • Paneto G.G.
        • Longo L.V.
        • Martins J.A.
        • de Camargo M.A.
        • Costa J.C.
        • de Mello A.C.
        • Chen B.
        • Oliveira R.N.
        • Hirata M.H.
        • Cicarelli R.M.
        Heteroplasmy in hair: study of mitochondrial DNA third hypervariable region in hair and blood samples.
        J. Forensic Sci. 2010; 55: 715-718
        • Roberts K.A.
        • Calloway C.
        Characterization of mitochondrial DNA sequence heteroplasmy in blood tissue and hair as a function of hair morphology.
        J. Forensic Sci. 2011; 56: 46-60
        • Wang Q.
        • Boles R.G.
        Individual human hair mitochondrial DNA control region heteroplasmy proportions in mothers and children.
        Mitochondrion. 2006; 6: 37-42
        • Sekiguchi K.
        • Kasai K.
        • Levin B.C.
        Inter- and intragenerational transmission of a human mitochondrial DNA heteroplasmy among 13 maternally-related individuals and differences between and within tissues in two family members.
        Mitochondrion. 2003; 2: 401-414
        • Paneto G.G.
        • Martins J.A.
        • Longo L.V.
        • Pereira G.A.
        • Freschi A.
        • Alvarenga V.L.
        • Chen B.
        • Oliveira R.N.
        • Hirata M.H.
        • Cicarelli R.M.
        Heteroplasmy in hair: differences among hair and blood from the same individuals are still a matter of debate.
        Forensic Sci. Int. 2007; 173: 117-121
        • Brandstätter A.
        • Parson W.
        Mitochondrial DNA heteroplasmy or artefacts-a matter of the amplification strategy?.
        Int. J. Legal Med. 2003; 117: 180-184
        • Naue J.
        • Hörer S.
        • Sanger T.
        • Strobl C.
        • Hatzer-Grubwieser P.
        • Parson W.
        • Lutz-Bonengel S.
        Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA.
        Mitochondrion. 2015; 20: 82-94
        • Sekiguchi K.
        • Sato H.
        • Kasai K.
        Mitochondrial DNA heteroplasmy among hairs from single individuals.
        J. Forensic Sci. 2004; 49: 986-991
        • Parson W.
        • Huber G.
        • Moreno L.
        • Madel M.B.
        • Brandhagen M.D.
        • Nagl S.
        • Xavier C.
        • Eduardoff M.
        • Callaghan T.C.
        • Irwin J.A.
        Massively parallel sequencing of complete mitochondrial genomes from hair shaft samples.
        Forensic Sci. Int. Genet. 2015; 15: 8-15
        • Salas A.
        • Lareu M.V.
        • Carracedo A.
        Heteroplasmy in mtDNA and the weight of evidence in forensic mtDNA analysis: a case report.
        Int. J. Legal Med. 2001; 114: 186-190
        • Wilson M.R.
        • Polanskey D.
        • Replogle J.
        • DiZinno J.A.
        • Budowle B.
        A family exhibiting heteroplasmy in the human mitochondrial DNA control region reveals both somatic mosaicism and pronounced segregation of mitotypes.
        Hum. Genet. 1997; 100: 167-171
        • Pfeiffer H.
        • Lutz-Bonengel S.
        • Pollak S.
        • Fimmers R.
        • Baur M.P.
        • Brinkmann B.
        Mitochondrial DNA control region diversity in hairs and body fluids of monozygotic triplets.
        Int. J. Legal Med. 2004; 118: 71-74
        • Junge A.
        • Madea B.
        Die Rolle der humanen mitochondrialen DNA in der Haaranalytik.
        in: Madea B. Mußhoff F. Haaranalytik: Technik und Interpretation in Medizin und Strafrecht. Deutscher Ärzte-Verlag, Köln2004: 364-379
        • Parson W.
        • Dür A.
        EMPOP-a forensic mtDNA database.
        Forensic Sci. Int. Genet. 2007; 1 (http://empop.online): 88-92
        • Houck M.M.
        • Budowle B.
        Correlation of microscopic and mitochondrial DNA hair comparisons.
        J. Forensic Sci. 2002; 47: 964-967
        • National Research Council Committee on Identifying the Needs of the Forensic Sciences Community
        Strengthening Forensic Science in the United States: A Path Forward.
        The National Academies Press, Washington, DC2009
      1. FBI, Press release Apr 20, 2015 last accessed on July 18, 2016 at http://www.fbi.gov/news/pressrel/press-releases/fbi-testimony-on-microscopic-hair-analysis-contained-errors-in-at-least-90-percent-of-cases-in-ongoing-review.

        • Walsh P.S.
        • Metzger D.A.
        • Higuchi R.
        Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material.
        Biotechniques. 1991; 10: 506-513
        • Niederstätter H.
        • Köchl S.
        • Grubwieser P.
        • Pavlic M.
        • Steinlechner M.
        • Parson W.
        A modular real-time PCR concept for determining the quantity and quality of human nuclear and mitochondrial DNA.
        Forensic Sci. Int. Genet. 2007; 1: 29-34
        • Parson W.
        • Bandelt H.J.
        Extended guidelines for mtDNA typing of population data in forensic science.
        Forensic Sci. Int. Genet. 2007; 1: 13-19
        • Andrews R.M.
        • Kubacka I.
        • Chinnery P.F.
        • Lightowlers R.N.
        • Turnbull D.M.
        • Howell N.
        Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA.
        Nat. Genet. 1999; 23: 147
        • van Oven M.
        • Kayser M.
        Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation.
        Hum. Mutat. 2009; 30: E386-394
        • Röck A.W.
        • Dür A.
        • van Oven M.
        • Parson W.
        Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA).
        Forensic Sci. Int.-Genet. 2013; 7: 601-609
        • Andreasson H.
        • Nilsson M.
        • Budowle B.
        • Lundberg H.
        • Allen M.
        Nuclear and mitochondrial DNA quantification of various forensic materials.
        Forensic Sci. Int. 2006; 164: 56-64
        • Sekiguchi K.
        • Imaizumi K.
        • Matsuda H.
        • Mizuno N.
        • Yoshida K.
        • Senju H.
        • Sato H.
        • Kasai K.
        MtDNA sequence analysis using capillary electrophoresis and its application to the analysis of mtDNA in hair.
        Jpn. J. Sci. Technol. Ident. 2003; 7: 123-130
        • Hühne J.
        • Pfeiffer H.
        • Waterkamp K.
        • Brinkmann B.
        Mitochondrial DNA in human hair shafts-existence of intra-individual differences?.
        Int. J. Legal Med. 1999; 112: 172-175
        • Pötsch L.
        • Bender K.
        Untersuchungen zu möglichen Mechanismen einer PCR-Hemmung in Haarextrakten durch Melanine.
        Rechtsmedizin. 2001; 11: 42-45
        • Linch C.A.
        • Champagne J.R.
        • Bonnette M.D.
        • Dawson Cruz T.
        Specific melanin content in human hairs and mitochondrial DNA typing success.
        Am. J. Forensic Med. Pathol. 2009; 30: 162-166
        • Roberts K.A.
        • Calloway C.
        Mitochondrial DNA amplification success rate as a function of hair morphology.
        J. Forensic Sci. 2007; 52: 40-47
        • Tully G.
        • Bär W.
        • Brinkmann B.
        • Carracedo A.
        • Gill P.
        • Morling N.
        • Parson W.
        • Schneider P.
        Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles.
        Forensic Sci. Int. 2001; 124: 83-91
        • Parson W.
        • Gusmao L.
        • Hares D.R.
        • Irwin J.A.
        • Mayr W.R.
        • Morling N.
        • Pokorak E.
        • Prinz M.
        • Salas A.
        • Schneider P.M.
        • Parsons T.J.
        DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing.
        Forensic Sci. Int. Genet. 2014; 13: 134-142
        • de Camargo M.A.
        • Paneto G.G.
        • de Mello A.C.
        • Martins J.A.
        • Barcellos W.
        • Cicarelli R.M.
        No relationship found between point heteroplasmy in mitochondrial DNA control region and age range, sex and haplogroup in human hairs.
        Mol. Biol. Rep. 2011; 38: 1219-1223
        • Grzybowski T.
        • Malyarchuk B.A.
        • Czarny J.
        • Miscicka-Sliwka D.
        • Kotzbach R.
        High levels of mitochondrial DNA heteroplasmy in single hair roots: reanalysis and revision.
        Electrophoresis. 2003; 24: 1159-1165
        • Forster L.
        • Forster P.
        • Gurney S.M.
        • Spencer M.
        • Huang C.
        • Rohl A.
        • Brinkmann B.
        Evaluating length heteroplasmy in the human mitochondrial DNA control region.
        Int. J. Legal Med. 2010; 124: 133-142
        • Irwin J.A.
        • Saunier J.L.
        • Niederstätter H.
        • Strouss K.M.
        • Sturk K.A.
        • Diegoli T.M.
        • Brandstätter A.
        • Parson W.
        • Parsons T.J.
        Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples.
        J. Mol. Evol. 2009; 68: 516-527
        • Morovvati S.
        • Morovvati Z.
        • Ranjbar R.
        Detecting rare triple heteroplasmic substitutions in the mitochondrial DNA control region: a potential concern for forensic DNA studies.
        Cell J. 2011; 13: 103-106
        • Calloway C.D.
        • Reynolds R.L.
        • Herrin Jr., G.L.
        • Anderson W.W.
        The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age.
        Am. J. Hum. Genet. 2000; 66: 1384-1397
        • Graffy E.A.
        • Foran D.R.
        A simplified method for mitochondrial DNA extraction from head hair shafts.
        J. Forensic Sci. 2005; 50: 1119-1122
      2. Scientific Working Group on DNA Analysis Methods (SWGDAM) Interpretation guidelines for mitochondrial DNA (mtDNA) analysis for forensic DNA testing laboratories, 2013.

        • Budowle B.
        • DiZinno J.A.
        • Wilson M.R.
        Interpretation Guidelines for Mitochondrial DNA Sequencing, Proceedings from the 10th International Symposium on Human Identification 1999.
        Promega Corporation, Madison, WI, USA2000
        • Holland M.M.
        • Parsons T.J.
        Mitochondrial DNA sequence analysis–validation and use for forensic casework.
        Forensic Sci. Rev. 1999; 11: 21-50
        • Kaplanova V.
        • Zeman J.
        • Hansikova H.
        • Cerna L.
        • Houst'kova H.
        • Misovicova N.
        • Houstek J.
        Segregation pattern and biochemical effect of the G3460A mtDNA mutation in 27 members of LHON family.
        J. Neurol. Sci. 2004; 223: 149-155
        • Parson W.
        • Brandstätter A.
        • Alonso A.
        • Brandt N.
        • Brinkmann B.
        • Carracedo A.
        • Corach D.
        • Froment O.
        • Furac I.
        • Grzybowski T.
        • Hedberg K.
        • Keyser-Tracqui C.
        • Kupiec T.
        • Lutz-Bonengel S.
        • Mevag B.
        • Ploski R.
        • Schmitter H.
        • Schneider P.
        • Syndercombe-Court D.
        • Sorensen E.
        • Thew H.
        • Tully G.
        • Scheithauer R.
        The EDNAP mitochondrial DNA population database (EMPOP) collaborative exercises: organisation, results and perspectives.
        Forensic Sci. Int. 2004; 139: 215-226
        • Naue J.
        • Sanger T.
        • Schmidt U.
        • Klein R.
        • Lutz-Bonengel S.
        Factors affecting the detection and quantification of mitochondrial point heteroplasmy using Sanger sequencing and SNaPshot minisequencing.
        Int. J. Legal Med. 2011; 125: 427-436
        • Tully L.A.
        • Parsons T.J.
        • Steighner R.J.
        • Holland M.M.
        • Marino M.A.
        • Prenger V.L.
        A sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region.
        Am. J. Hum. Genet. 2000; 67: 432-443
        • Just R.S.
        • Irwin J.A.
        • Parson W.
        Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing.
        Forensic Sci. Int. Genet. 2015; 18: 131-139
        • Parson W.
        • Strobl C.
        • Huber G.
        • Zimmermann B.
        • Gomes S.M.
        • Souto L.
        • Fendt L.
        • Delport R.
        • Langit R.
        • Wootton S.
        • Lagace R.
        • Irwin J.
        Evaluation of next generation mtGenome sequencing using the Ion torrent personal genome machine (PGM).
        Forensic Sci. Int. Genet. 2013; 7: 543-549
        • Lutz-Bonengel S.
        • Sanger T.
        • Pollak S.
        • Szibor R.
        Different methods to determine length heteroplasmy within the mitochondrial control region.
        Int. J. Legal Med. 2004; 118: 274-281
        • Berger C.
        • Hatzer-Grubwieser P.
        • Hohoff C.
        • Parson W.
        Evaluating sequence-derived mtDNA length heteroplasmy by amplicon size analysis.
        Forensic Sci. Int.-Gen. 2011; 5: 142-145