Advertisement
Research paper| Volume 25, P19-25, November 2016

A plasma modified cellulose-chitosan porous membrane allows efficient DNA binding and provides antibacterial properties: A step towards developing a new DNA collecting card

      Highlights

      • The plasma modified cellulose-chitosan (pCE-CS) membrane was produced as an efficient card to bind, retain and release DNA.
      • DNA recovery from pCE-CS membrane was 5.7 folds greater than the tested commercial card.
      • The obtained DNA had a good quality for PCR amplification.

      Abstract

      In forensic DNA analyses, biological specimens are collected and stored for subsequent recovery and analysis of DNA. A cost-effective and efficient DNA recovery approach is therefore a need. This study aims to produce a plasma modified cellulose-chitosan membrane (pCE-CS) that efficiently binds and retains DNA as a potential DNA collecting card. The pCE-CS membrane was produced by a phase separation of ionic liquid dissolving CE and CS in water with subsequent surface-modification by a two-step exposure of argon plasma and nitrogen gas. Through plasma modification, the pCE-CS membrane demonstrated better DNA retention after a washing process and higher rate of DNA recovery as compared with the original CE-CS membrane and the commercial FTA card. In addition, the pCE-CS membrane exhibited anti-bacterial properties against both Escherichia coli and Staphylococcus aureus. The results of this work suggest a potential function of the pCE-CS membrane as a DNA collecting card with a high recovery rate of captured DNA.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Butler J.M.
        Chapter 1—sample collection, storage, and characterization.
        Advanced Topics in Forensic DNA Typing: Methodology. Academic Press, San Diego2012: 1-27
      1. GE Healthcare Life Sciences, Your Forensic Samples Our Experience, United Kingdom, 2011.

      2. Thermo Fisher Scientific, DNA Collection Solutions for Human Identification, United States, 2013.

      3. N. Macherey, NucleoSave Blood Storage Cards, Convenient Storage of Blood Samples at Room Temperature NucleoSave, Germany, 2015.

        • Stangegaard M.
        • Ferrero-Miliani L.
        • Børsting C.
        • Frank-Hansen R.
        • Hansen A.J.
        • Morling N.
        Repeated extraction of DNA from FTA cards.
        Forensic Sci. Int. Genet. 2011; 3: e345-e346
      4. M. Miles, D. Saul, Improved Elution of DNA from Whatman FTA® Cards Using prepGEM®/ forensic GEM® Storage Card Extraction Kits. New Zealand (2015).

        • Rockenbauer E.
        • Børsting C.
        • Stangegaard M.
        • Frank-Hansen R.
        • Morling N.
        Successful STR and SNP typing of FTA Card samples with low amounts of DNA after DNA extraction using a Qiagen BioRobot® EZ1 Workstation.
        Forensic Sci. Int. Genet. 2009; 2: 83-84
        • Yang F.
        • Liu Y.-n.
        • Yu J.-l.
        • Li H.-p.
        • Li G.
        Synthesis, micellization behavior and alcohol induced amphipathic cellulose film of cellulose-based amphiphilic surfactant.
        Appl. Surf. Sci. 2015; 345: 187-193
        • Zhou W.
        • Xu Y.
        • Wang D.
        • Zhou S.
        Chitosan removes toxic heavy metal ions from cigarette mainstream smoke.
        J. Ocean Univ. China. 2013; 12: 509-514
        • Rinaudo M.
        Chitin and chitosan: properties and applications.
        Prog. Polym. Sci. 2006; 31: 603-632
        • Yen M.-T.
        • Yang J.-H.
        • Mau J.-L.
        Antioxidant properties of chitosan from crab shells.
        Carbohydr. Polym. 2008; 74: 840-844
        • Lin W.-C.
        • Lien C.-C.
        • Yeh H.-J.
        • Yu C.-M.
        • -h. Hsu S.
        Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications.
        Carbohydr. Polym. 2013; 94: 603-611
        • Almasi H.
        • Ghanbarzadeh B.
        • Dehghannya J.
        • Entezami A.A.
        • Asl A.K.
        Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): Morphological and physical properties.
        Food Packag. Shelf Life. 2015; 5: 21-31
        • Zhang H.
        • Wu J.
        • Zhang J.
        • He J.
        1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose.
        Macromolecules. 2005; 38: 8272-8277
        • Li Y.-N.
        • Wang J.-Q.
        • He L.-N.
        • Yang Z.-Z.
        • Liu A.-H.
        • Yu B.
        • Luan C.-R.
        Experimental and theoretical studies on imidazolium ionic liquid-promoted conversion of fructose to 5-hydroxymethylfurfural.
        Green Chem. 2012; 14: 2752-2758
        • Nishiyama Y.
        • Langan P.
        • Wada M.
        • Forsyth V.T.
        Looking at hydrogen bonds in cellulose.
        Acta Crystallogr. D. 2010; 66: 1172-1177
        • Xiao W.
        • Chen Q.
        • Wu Y.
        • Wu T.
        • Dai L.
        Dissolution and blending of chitosan using 1,3-dimethylimidazolium chloride and 1-H-3-methylimidazolium chloride binary ionic liquid solvent.
        Carbohydr. Polym. 2011; 83: 233-238
        • Kim S.
        • Cho M.-H.
        • Lee J.-R.
        • Park S.-J.
        Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs.
        J. Power Sources. 2006; 159: 46-48
        • Hao X.
        • Shen W.
        • Chen Z.
        • Zhu J.
        • Feng L.
        • Wu Z.
        • Wang P.
        • Zeng X.
        • Wu T.
        Self-assembled nanostructured cellulose prepared by a dissolution and regeneration process using phosphoric acid as a solvent.
        Carbohydr. Polym. 2015; 123: 297-304
        • Yang H.
        • Yan R.
        • Chen H.
        • Lee D.H.
        • Zheng C.
        Characteristics of hemicellulose, cellulose and lignin pyrolysis.
        Fuel. 2007; 86: 1781-1788
        • Abidi N.
        • Cabrales L.
        • Haigler C.H.
        Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy.
        Carbohydr. Polym. 2014; 100: 9-16
        • Kadir M.F.Z.
        • Aspanut Z.
        • Majid S.R.
        • Arof A.K.
        FTIR studies of plasticized poly(vinyl alcohol)–chitosan blend doped with NH4NO3 polymer electrolyte membrane.
        Spectrochim. Acta Mol. Biomol. Spectrosc. 2011; 78: 1068-1074
        • Ruiz Matute A.I.
        • Cardelle-Cobas A.
        • García-Bermejo A.B.
        • Montilla A.
        • Olano A.
        • Corzo N.
        Synthesis, characterization and functional properties of galactosylated derivatives of chitosan through amide formation.
        Food Hydrocoll. 2013; 33: 245-255
        • Boonsongrit B.W.
        Characterization of drug–chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry.
        Eur. J. Pharm. Biopharm. 2008; 69: 388-395
        • Paluszkiewicz C.
        • Stodolak E.
        • Hasik M.
        • Blazewicz M.
        FT-IR study of montmorillonite–chitosan nanocomposite materials.
        Spectrochim. Acta Mol. Biomol. Spectrosc. 2011; 79: 784-788
        • Tang L.
        • Ma X.
        • Song Y.
        • Yu J.
        A simple way of preparing large compound vesicles loaded with and without silver nanoparticles based on polystyrene-block-polyacrylonitrile.
        Colloid Polym. Sci. 2012; 291: 893-902
        • Moorthy J.N.
        • Singhal N.
        Facile and highly selective conversion of nitriles to amides via indirect acid-catalyzed hydration using TFA or AcOH-H2SO4.
        J. Org. Chem. 2005; 70: 1926-1929
        • Prieto A.
        • Cifuentes L.A.
        • Alfonso R.
        • Ortega J.
        • Camargo M.
        Isolation of DNA using IsoCode cards.
        Int. Congr. Ser. 2006; 1288: 713-715
        • Lu Y.
        • Weng L.
        • Cao X.
        Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter.
        Macromol. Biosci. 2005; 5: 1101-1107
        • Yang B.
        • Li X.
        • Shi S.
        • Kong X.
        • Guo G.
        • Huang M.
        • Luo F.
        • Wei Y.
        • Zhao X.
        • Qian Z.
        Preparation and characterization of a novel chitosan scaffold.
        Carbohydr. Polym. 2010; 80: 860-865
        • Shih C.M.
        • Shieh Y.T.
        • Twu Y.K.
        Preparation and characterization of cellulose/chitosan blend films.
        Carbohydr. Polym. 2009; 78: 169-174
      5. B. Cobb, Nucleic acid extraction. WO2013175188 A1, Google Patents, 2013.

        • Meulenbelt I.
        • Droog S.
        • Trommelen G.J.
        • Boomsma D.I.
        • Slagboom P.E.
        High-yield noninvasive human genomic DNA isolation method for genetic studies in geographically dispersed families and populations.
        Am. J. Hum. Genet. 1995; 57: 1252-1254
        • Taanman J.-W.
        The mitochondrial genome: structure, transcription, translation and replication.
        Biochim. Biophys. Acta. 1999; 1410: 103-123
        • Wolfert M.A.
        • Dash P.R.
        • Nazarova O.
        • Oupicky D.
        • Seymour L.W.
        • Smart S.
        • Strohalm J.
        • Ulbrich K.
        Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA.
        Bioconjug. Chem. 1999; 10: 993-1004
        • Zhang H.-P.
        • Bai S.
        • Xu L.
        • Sun Y.
        Fabrication of mono-sized magnetic anion exchange beads for plasmid DNA purification.
        J. Chromatogr. B. 2009; 877: 127-133
        • Ahmed H.A.
        • MacLeod E.T.
        • Hide G.
        • Welburn S.C.
        • Picozzi K.
        The best practice for preparation of samples from FTA®cards for diagnosis of blood borne infections using African trypanosomes as a model system.
        Parasites Vectors. 2011; 4: 1-7
        • Alaeddini R.
        Forensic implications of PCR inhibition—a review.
        Forensic Sci. Int. Genet. 2012; 6: 297-305