Advertisement
Research paper| Volume 25, P166-174, November 2016

TriXY—Homogeneous genetic sexing of highly degraded forensic samples including hair shafts

  • Author Footnotes
    1 These authors contributed equally to this work.
    Maria-Bernadette Madel
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Harald Niederstätter
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
    Search for articles by this author
  • Walther Parson
    Correspondence
    Corresponding author at: Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.
    Affiliations
    Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria

    Forensic Science Program, The Pennsylvania State University, University Park, PA, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
Published:September 02, 2016DOI:https://doi.org/10.1016/j.fsigen.2016.09.001

      Highlights

      • This study presents a new homogeneous PCR assay (high-resolution melting curve analysis) for robust sex diagnosis (TriXY), especially for the analysis of severely fragmented DNA.
      • TriXY’s closed-tube format avoids post-PCR sample manipulations and, therefore, distinctly reduces the risk of PCR product carry-over contamination and sample mix-up.
      • The method is sensitive down to the DNA contents of approximately two diploid cells.
      • TriXY outperforms existing sexing methods both in terms of sensitivity and minimum required template molecule lengths.

      Abstract

      Sexing of biological evidence is an important aspect in forensic investigations. A routinely used molecular-genetic approach to this endeavour is the amelogenin sex test, which is integrated in most commercially available polymerase chain reaction (PCR) kits for human identification. However, this assay is not entirely effective in respect to highly degraded DNA samples. This study presents a homogeneous PCR assay for robust sex diagnosis, especially for the analysis of severely fragmented DNA. The introduced triplex for the X and Y chromosome (TriXY) is based on real-time PCR amplification of short intergenic sequences (<50 bp) on both gonosomes. Subsequent PCR product examination and molecular-genetic sex-assignment rely on high-resolution melting (HRM) curve analysis. TriXY was optimized using commercially available multi-donor human DNA preparations of either male or female origin and successfully evaluated on challenging samples, including 46 ancient DNA specimens from archaeological excavations and a total of 16 DNA samples extracted from different segments of eight hair shafts of male and female donors. Additionally, sensitivity and cross-species amplification were examined to further test the assay’s utility in forensic investigations. TriXY's closed-tube format avoids post-PCR sample manipulations and, therefore, distinctly reduces the risk of PCR product carry-over contamination and sample mix-up, while reducing labour and financial expenses at the same time. The method is sensitive down to the DNA content of approximately two diploid cells and has proven highly useful on severely fragmented and low quantity ancient DNA samples. Furthermore, it even allowed for sexing of proximal hair shafts with very good results. In summary, TriXY facilitates highly sensitive, rapid, and costeffective genetic sex-determination. It outperforms existing sexing methods both in terms of sensitivity and minimum required template molecule lengths. Therefore, we feel confident that TriXY will prove to be a reliable addition to the toolbox currently used for sex-typing in forensic genetics and other fields of research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mannucci A.
        • Sullivan K.M.
        • Ivanov P.L.
        • Gill P.
        Forensic application of a rapid and quantitative DNA sex test by amplification of the X-Y homologous gene amelogenin.
        Int. J. Legal Med. 1994; 106: 190-193
        • Sullivan K.M.
        • Mannucci A.
        • Kimpton C.P.
        • Gill P.
        A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin.
        Biotechniques. 1993; 15: 636-641
        • Nakahori Y.
        • Takenaka O.
        • Nakagome Y.
        A human X-Y homologous region encodes amelogenin.
        Genomics. 1991; 9: 264-269
        • Haas-Rochholz H.
        • Weiler G.
        Additional primer sets for an amelogenin gene PCR-based DNA-sex test.
        Int. J. Legal Med. 1997; 110: 312-315
        • Shadrach B.
        • Commane M.
        • Hren C.
        • Warshawsky I.
        A rare mutation in the primer binding region of the amelogenin gene can interfere with gender identification.
        J. Mol. Diagn. 2004; 6: 401-405
        • Roffey P.E.
        • Eckhoff C.I.
        • Kuhl J.L.
        A rare mutation in the amelogenin gene and its potential investigative ramifications.
        J. Forensic Sci. 2000; 45: 1016-1019
        • Shewale J.G.
        • Richey S.L.
        • Sinha S.K.
        Anomalous amplification of the amelogenin locus typed by AmpFISTR Profiler Plus amplification kit.
        Forensic Sci. Commun. 2000; (https://goo.gl/vX7tKm): 2
        • Alves C.
        • Coelho M.
        • Rocha J.
        • Amorim A.
        The amelogenin locus displays a high frequency of X homologue failures in Sao Tomé island (West Africa).
        Int. Cong. Ser. 2006; 1288: 271-273
        • Maciejewska A.
        • Pawlowski R.
        A rare mutation in the primer binding region of the Amelogenin X homologue gene.
        Forensic Sci. Int. Genet. 2009; 3: 265-267
        • Santos F.R.
        • Pandya A.
        • Tyler-Smith C.
        Reliability of DNA-based sex tests.
        Nat. Genet. 1998; 18: 103
        • Jobling M.A.
        • Lo I.C.
        • Turner D.J.
        • Bowden G.R.
        • Lee A.C.
        • Xue Y.
        • et al.
        Structural variation on the short arm of the human Y chromosome: recurrent multigene deletions encompassing amelogenin Y.
        Hum. Mol. Genet. 2007; 16: 307-316
        • Butler J.M.
        Advanced topics in forensic DNA typing.
        Academic Press, Oxford2011: 130-132
        • Cadenas A.M.
        • Regueiro M.
        • Gayden T.
        • Singh N.
        • Zhivotovsky L.A.
        • Underhill P.A.
        • et al.
        Male amelogenin dropouts: phylogenetic context, origins and implications.
        Forensic Sci. Int. 2007; 166: 155-163
        • Chang Y.M.
        • Perumal R.
        • Keat P.Y.
        • Yong R.Y.
        • Kuehn D.L.
        • Burgoyne L.
        A distinct Y-STR haplotype for Amelogenin negative males characterized by a large Y(p)11.2 (DYS458-MSY1-AMEL-Y) deletion.
        Forensic Sci. Int. 2007; 166: 115-120
        • Chen W.
        • Wu W.
        • Cheng J.
        • Zhang Y.
        • Chen Y.
        • Sun H.
        Detection of the deletion on Yp11.2 in a Chinese population.
        Forensic Sci. Int. Genet. 2014; 8: 73-79
        • Kumagai R.
        • Sasaki Y.
        • Tokuta T.
        • Biwasaka H.
        • Aoki Y.
        DNA analysis of family members with deletion in Yp11.2 region containing amelogenin locus.
        Legal Med. (Tokyo). 2008; 10: 39-42
        • Lattanzi W.
        • Di Giacomo M.C.
        • Lenato G.M.
        • Chimienti G.
        • Voglino G.
        • Resta N.
        • et al.
        A large interstitial deletion encompassing the amelogenin gene on the short arm of the Y chromosome.
        Hum. Genet. 2005; 116: 395-401
        • Ma Y.
        • Kuang J.Z.
        • Zhang J.
        • Wang G.M.
        • Wang Y.J.
        • Jin W.M.
        • et al.
        Y chromosome interstitial deletion induced Y-STR allele dropout in AMELY-negative individuals.
        Int. J. Legal Med. 2012; 126: 713-724
        • Michael A.
        • Brauner P.
        Erroneous gender identification by the amelogenin sex test.
        J. Forensic Sci. 2004; 49: 258-259
        • Mitchell R.J.
        • Kreskas M.
        • Baxter E.
        • Buffalino L.
        • van Oorschot R.A.
        An investigation of sequence deletions of amelogenin (AMELY), a Y-chromosome locus commonly used for gender determination.
        Ann. Hum. Biol. 2006; 33: 227-240
        • Ou X.
        • Chen W.
        • Chen H.
        • Zhao F.
        • Zheng J.
        • Tong D.
        • et al.
        Null alleles of the X and Y chromosomal amelogenin gene in a Chinese population.
        Int. J. Legal Med. 2012; 126: 513-518
        • Santacroce R.
        • Vecchione G.
        • Tomaiyolo M.
        • Sessa F.
        • Sarno M.
        • Colaizzo D.
        • et al.
        Identification of fetal gender in maternal blood is a helpful tool in the prenatal diagnosis of haemophilia.
        Haemophilia. 2006; 12: 417-422
        • Steinlechner M.
        • Berger B.
        • Niederstätter H.
        • Parson W.
        Rare failures in the amelogenin sex test.
        Int. J. Legal Med. 2002; 116: 117-120
        • Takayama T.
        • Takada N.
        • Suzuki R.
        • Nagaoka S.
        • Watanabe Y.
        • Kumagai R.
        • et al.
        Determination of deleted regions from Yp11.2 of an amelogenin negative male.
        Legal Med. (Tokyo). 2009; : S578-580
        • Thangaraj K.
        • Reddy A.G.
        • Singh L.
        Is the amelogenin gene reliable for gender identification in forensic casework and prenatal diagnosis?.
        Int. J. Legal Med. 2002; 116: 121-123
        • Fazi A.
        • Gobeski B.
        • Foran D.
        Development of two highly sensitive forensic sex determination assays based on human DYZ1 and Alu repetitive DNA elements.
        Electrophoresis. 2014; 35: 3028-3035
        • Boonyarit H.
        • Mahasirimongkol S.
        • Chavalvechakul N.
        • Aoki M.
        • Amitani H.
        • Hosono N.
        • et al.
        Development of a SNP set for human identification: a set with high powers of discrimination which yields high genetic information from naturally degraded DNA samples in the Thai population.
        Forensic Sci. Int. Genet. 2014; 11: 166-173
        • Kim J.J.
        • Han B.G.
        • Lee H.I.
        • Yoo H.W.
        • Lee J.K.
        Development of SNP-based human identification system.
        Int. J. Legal Med. 2010; 124: 125-131
        • Lee H.Y.
        • Park M.J.
        • Yoo J.E.
        • Chung U.
        • Han G.R.
        • Shin K.J.
        Selection of twenty-four highly informative SNP markers for human identification and paternity analysis in Koreans.
        Forensic Sci. Int. 2005; 148: 107-112
        • Tschentscher F.
        • Frey U.H.
        • Bajanowski T.
        Amelogenin sex determination by pyrosequencing of short PCR products.
        Int. J. Legal Med. 2008; 122: 333-335
      1. Bundeskanzleramt Österreich Sicherheitspolizeigesetz (SPO) § 67. DNA Untersuchungen [Internet]. [cited 2016 May 7]. Available from: https://goo.gl/IDdUWz.

        • Esteve Codina A.
        • Niederstätter H.
        • Parson W.
        GenderPlex a PCR multiplex for reliable gender determination of degraded human DNA samples and complex gender constellations.
        Int. J. Legal Med. 2009; 123: 459-464
        • Bauer C.M.
        • Niederstätter H.
        • McGlynn G.
        • Stadler H.
        • Parson W.
        Comparison of morphological and molecular genetic sex-typing on mediaeval human skeletal remains.
        Forensic Sci. Int. Genet. 2013; 7: 581-586
        • Zehethofer K.
        • Rolf B.
        A molecular analysis of three amelogenin negative males in two routine paternity tests.
        Forensic Sci. Int. Genet. 2011; 5: 550-551
        • Krishan K.
        • Chatterjee P.M.
        • Kanchan T.
        • Kaur S.
        • Baryah N.
        • Singh R.K.
        A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework.
        Forensic Sci. Int. 2016; 261: 165.e1-165.e8
        • Cadamuro V.C.
        • Bouakaze C.
        • Croze M.
        • Schiavinato S.
        • Tonasso L.
        • Gerard P.
        • et al.
        Determined about sex: sex-testing in 45 primate species using a 2Y/1X sex-typing assay.
        Forensic Sci. Int. Genet. 2015; 14: 96-107
        • Nakanishi H.
        • Shojo H.
        • Ohmori T.
        • Hara M.
        • Takada A.
        • Adachi N.
        • et al.
        A novel method for sex determination by detecting the number of X chromosomes.
        Int. J. Legal Med. 2015; 129: 23-29
        • Borovko S.
        • Shyla A.
        • Korban V.
        • Borovko A.
        Amelogenin test abnormalities revealed in Belarusian population during forensic DNA analysis.
        Forensic Sci. Int. Genet. 2015; 15: 98-104
        • Kupiec T.
        • Branicki W.
        Genetic examination of the putative skull of Jan Kochanowski reveals its female sex.
        Croat. Med. J. 2011; 52: 403-409
        • Walsh P.S.
        • Metzger D.A.
        • Higuchi R.
        Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material.
        Biotechniques. 1991; 10: 506-513
        • Parson W.
        • Huber G.
        • Moreno L.
        • Madel M.B.
        • Brandhagen M.D.
        • Nagl S.
        • et al.
        Massively parallel sequencing of complete mitochondrial genomes from hair shaft samples.
        Forensic Sci. Int. Genet. 2015; 15: 8-15
        • Walker J.A.
        • Hedges D.J.
        • Perodeau B.P.
        • Landry K.E.
        • Stoilova N.
        • Laborde M.E.
        • et al.
        Multiplex polymerase chain reaction for simultaneous quantitation of human nuclear, mitochondrial, and male Y-chromosome DNA: application in human identification.
        Anal. Biochem. 2005; 337: 89-97
        • Tomas C.
        • Sanchez J.J.
        • Barbaro A.
        • Brandt-Casadevall C.
        • Hernandez A.
        • Ben Dhiab M.
        • et al.
        X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans).
        BMC Evol. Biol. 2008; 8: 75
        • Underhill P.A.
        • Jin L.
        • Lin A.A.
        • Mehdi S.Q.
        • Jenkins T.
        • Vollrath D.
        • et al.
        Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography.
        Genome Res. 1997; 7: 996-1005
        • Underhill P.A.
        • Passarino G.
        • Lin A.A.
        • Shen P.
        • Mirazon Lahr M.
        • Foley R.A.
        • et al.
        The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations.
        Ann. Hum. Genet. 2001; 65: 43-62
        • Zuker M.
        Mfold web server for nucleic acid folding and hybridization prediction.
        Nucleic Acids Res. 2003; 31: 3406-3415
        • Vallone P.M.
        • Butler J.M.
        AutoDimer: a screening tool for primer-dimer and hairpin structures.
        Biotechniques. 2004; 37: 226-231
      2. A.N. Spiess, qpcR: Modelling and analysis of real-time PCR data [Internet]. R package version 1. 4-0. 2014. Available from: https://CRAN.R-project.org/package=qpcR.

        • Winship P.R.
        An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide.
        Nucleic Acids Res. 1989; 17: 1266
        • Henke W.
        • Herdel K.
        • Jung K.
        • Schnorr D.
        • Loening S.A.
        Betaine improves the PCR amplification of GC-rich DNA sequences.
        Nucleic Acids Res. 1997; 25: 3957-3958
        • Ahokas H.
        • Erkkila M.J.
        Interference of PCR amplification by the polyamines, spermine and spermidine.
        PCR Methods Appl. 1993; 3: 65-68
        • Shaik G.M.
        • Draberova L.
        • Draber P.
        • Boubelik M.
        • Draber P.
        Tetraalkylammonium derivatives as real-time PCR enhancers and stabilizers of the qPCR mixtures containing SYBR Green I.
        Nucleic Acids Res. 2008; 36: e93
        • Wood W.I.
        • Gitschier J.
        • Lasky L.A.
        • Lawn R.M.
        Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries.
        Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 1585-1588
        • Jacobs K.A.
        • Rudersdorf R.
        • Neill S.D.
        • Dougherty J.P.
        • Brown E.L.
        • Fritsch E.F.
        The thermal stability of oligonucleotide duplexes is sequence independent in tetraalkylammonium salt solutions: application to identifying recombinant DNA clones.
        Nucleic Acids Res. 1988; 16: 4637-4650
        • Higuchi R.
        • Fockler C.
        • Dollinger G.
        • Watson R.
        Kinetic PCR analysis: real-time monitoring of DNA amplification reactions.
        Biotechnology. 1993; 11: 1026-1030
        • McGlynn G.
        Using 13C-, 15N-, and 18O Stable Isotope Analysis of Human Bone Tissue to Identify Transhumance, High Altitude Habitation and Reconstruct Palaeodiet for the Early Medieval Alpine Population at Volders, Austria [dissertation].
        Ludwig-Maximilians-Universität München, München2007
        • Harder M.
        • Renneberg R.
        • Meyer P.
        • Krause-Kyora B.
        • von Wurmb-Schwark N.
        STR-typing of ancient skeletal remains: which multiplex-PCR kit is the best?.
        Croat. Med. J. 2012; 53: 416-422
        • Helena Mangs A.
        • Morris B.J.
        The human pseudoautosomal region (PAR): origin, function and future.
        Curr. Genomics. 2007; 8: 129-136
        • Bruzek J.
        A method for visual determination of sex: using the human hip bone.
        Am. J. Phys. Anthropol. 2002; 117: 157-168
        • Butler J.M.
        Advanced Topics in Forensic DNA Typing: Methodology.
        Elsevier Academic Press, San Diego, CA2012