Advertisement
Research paper| Volume 25, P191-197, November 2016

DNA Commission of the International Society for Forensic Genetics: Recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications

Published:September 04, 2016DOI:https://doi.org/10.1016/j.fsigen.2016.09.002

      Highlights

      • The International Society for Forensic Genetics (ISFG) has convened a DNA Commission to establish validation guidelines for bio-statistical software to be used in forensic genetics.
      • We present recommendations for the minimum requirements to validate bio-statistical software for forensic genetics.
      • Recommendations are provided for developmental validation and the responsibilities of the software developer.
      • Recommendations for internal validation and the responsibilities of the end user are also provided.

      Abstract

      The use of biostatistical software programs to assist in data interpretation and calculate likelihood ratios is essential to forensic geneticists and part of the daily case work flow for both kinship and DNA identification laboratories. Previous recommendations issued by the DNA Commission of the International Society for Forensic Genetics (ISFG) covered the application of bio-statistical evaluations for STR typing results in identification and kinship cases, and this is now being expanded to provide best practices regarding validation and verification of the software required for these calculations. With larger multiplexes, more complex mixtures, and increasing requests for extended family testing, laboratories are relying more than ever on specific software solutions and sufficient validation, training and extensive documentation are of upmost importance.
      Here, we present recommendations for the minimum requirements to validate bio-statistical software to be used in forensic genetics. We distinguish between developmental validation and the responsibilities of the software developer or provider, and the internal validation studies to be performed by the end user. Recommendations for the software provider address, for example, the documentation of the underlying models used by the software, validation data expectations, version control, implementation and training support, as well as continuity and user notifications. For the internal validations the recommendations include: creating a validation plan, requirements for the range of samples to be tested, Standard Operating Procedure development, and internal laboratory training and education. To ensure that all laboratories have access to a wide range of samples for validation and training purposes the ISFG DNA commission encourages collaborative studies and public repositories of STR typing results.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brenner C.H.
        Symbolic kinship program.
        Genetics. 1997; 145: 535-542
        • Riancho J.A.
        • Zarrabeitia M.T.
        A Windows-based software for common paternity and sibling analyses.
        Forensic Sci. Int. 2003; 135: 232-234
        • Drábek J.
        Validation of software for calculating the likelihood ratio for parentage and kinship.
        Forensic Sci. Int. Genet. 2009; 3: 112-118
        • Perlin M.W.
        • Legler M.M.
        • Spencer C.E.
        • Smith J.L.
        • Allan W.P.
        • Belrose J.L.
        • Duceman B.W.
        Validating TrueAllele® DNA mixture interpretation.
        J. Forensic Sci. 2011; 56: 1430-1447
        • Röck A.
        • Irwin J.
        • Dür A.
        • Parsons T.
        • Parson W.
        SAM: String-based sequence search algorithm for mitochondrial DNA database queries.
        Forensic Sci. Int. Genet. 2011; 5: 126-132
        • Slooten K.
        Match probabilities for multiple siblings.
        Forensic Sci. Int. Genet. 2012; 6: 466-468
        • Mitchell A.A.
        • Tamariz J.
        • O’Connell K.
        • Ducasse N.
        • Budimlija Z.
        • Prinz M.
        • Caragine T.
        Validation of a DNA mixture statistics tool incorporating allelic drop-out and drop-in.
        Forensic Sci. Int. Genet. 2012; 6: 749-761
        • Gill P.
        • Haned H.
        A new methodological framework to interpret complex DNA profiles using likelihood ratios.
        Forensic Sci. Int. Genet. 2013; 7: 251-263
        • Kling D.
        • Tillmar A.O.
        • Egeland T.
        Familias 3—extensions and new functionality.
        Forensic Sci. Int. Genet. 2014; 13: 121-127
        • Puch-Solis R.
        • Clayton T.
        Evidential evaluation of DNA profiles using a discrete statistical model implemented in the DNA LiRa software.
        Forensic Sci. Int. Genet. 2014; 11: 220-228
        • Steele C.D.
        • Greenhalgh M.
        • Balding D.J.
        Verifying likelihoods for low template DNA profiles using multiple replicates.
        Forensic Sci. Int. Genet. 2014; 13: 82-89
        • Cowell R.G.
        • Graversen T.
        • Lauritzen S.L.
        • Mortera J.
        Analysis of forensic DNA mixtures with artefacts.
        J. R. Stat. Soc. Ser. C: Appl. Stat. 2015; 64: 1-48
        • Dørum G.
        • Kling D.
        • Baeza-Richer C.
        • García-Magariños M.
        • Sæbø S.
        • Desmyter S.
        • Egeland T.
        Models and implementation for relationship problems with dropout.
        Int. J. Legal Med. 2015; 129: 411-423
        • Taylor D.
        • Buckleton J.
        • Evett I.
        Testing likelihood ratios produced from complex DNA profiles.
        Forensic Sci. Int. Genet. 2015; 16: 165-171
        • Bleka Ø.
        • Storvik G.
        • Gill P.
        EuroForMix: an open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts.
        Forensic Sci. Int. Genet. 2016; 21: 35-44
      1. IEEE Standard for System and Software Verification and Validation, in IEEE Std 1012-2012 (Revision of IEEE Std 1012-2004), pp. 1–223, May 25 2012; 10.1109/IEEESTD.2012.6204026.

      2. IEEE Standard for Software and System Test Documentation, in IEEE Std 829-2008, pp. 1–150, July 18 2008; 10.1109/IEEESTD.2008.4578383.

      3. General Principles of Software Validation; Final Guidance for Industry and FDA Staff, U.S. Department Of Health and Human Services – Food and Drug Administration—Center for Devices and Radiological Health & Center for Biologics Evaluation and Research. (2002) available at: http://tinyurl.com/m39b2g.

        • Morling N.
        • Allen R.W.
        • Carracedo A.
        • Geada H.
        • Guidet F.
        • Hallenberg C.
        • Martin W.
        • Mayr W.R.
        • Olaisen B.
        • Pascali V.L.
        • Schneider P.M.
        Paternity Testing Commission of the International Society of Forensic Genetics: recommendations on genetic investigations in paternity cases.
        Forensic Sci. Int. 2002; 129: 148-157
        • Gill P.
        • Brenner C.H.
        • Buckleton J.S.
        • Carracedo A.
        • Krawczak M.
        • Mayr W.R.
        • Morling N.
        • Prinz M.
        • Schneider P.M.
        • Weir B.S.
        DNA Commission of the International Society of Forensic Genetics: recommendations on the interpretation of mixtures.
        Forensic Sci. Int. 2006; 160: 90-101
        • Gjertson D.W.
        • Brenner C.H.
        • Baur M.P.
        • Carracedo A.
        • Guidet F.
        • Luque J.A.
        • Lessig R.
        • Mayr W.R.
        • Pascali V.L.
        • Prinz M.
        • Schneider P.M.
        • Morling N.
        ISFG: recommendations on biostatistics in paternity testing.
        Forensic Sci. Int. Genet. 2007; 1: 223-231
        • Gill P.
        • Gusmão L.
        • Haned H.
        • Mayr W.R.
        • Morling N.
        • Parson W.
        • Prieto L.
        • Prinz M.
        • Schneider H.
        • Schneider P.M.
        • Weir B.S.
        DNA Commission of the International Society of Forensic Genetics: recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods.
        Forensic Sci. Int. Genet. 2012; 6: 679-688
      4. Scientific Working Group on DNA Analysis Methods (SWGDAM), Validation Guidelines for DNA Analysis Methods (2012), pp. 1–13. http://media.wix.com/ugd/4344b0_cbc27d16dcb64fd88cb36ab2a2a25e4c.pdf.

        • Bright J.A.
        • Evett I.W.
        • Taylor D.
        • Curran J.M.
        • Buckleton J.
        A series of recommended tests when validating probabilistic DNA profile interpretation software.
        Forensic Sci. Int. Genet. 2015; 14: 125-131
      5. Scientific Working Group on DNA Analysis Methods (SWGDAM), Guidelines for the Validation of Probabilistic Genotyping Systems (2015), pp. 1–12. http://media.wix.com/ugd/4344b0_22776006b67c4a32a5ffc04fe3b56515.pdf.

        • Taylor D.
        Using continuous DNA interpretation methods to revisit likelihood ratio behaviour.
        Forensic Sci. Int. Genet. 2014; 11: 144-153
        • Gill P.
        • Curran J.
        • Neumann C.
        • Kirkham A.
        • Clayton T.
        • Whitaker J.
        • Lambert J.
        Interpretation of complex DNA profiles using empirical models and a method to measure their robustness.
        Forensic Sci. Int. Genet. 2008; 2: 91-103
        • Buckleton J.
        • Bright J.A.
        • Taylor D.
        • Evett I.
        • Hicks T.
        • Jackson G.
        • Curran J.M.
        Helping formulate propositions in forensic DNA analysis.
        Sci. Justice. 2014; 54: 258-261
        • Hicks T.
        • Biedermann A.
        • de Koeijer J.A.
        • Taroni F.
        • Champod C.
        • Evett I.W.
        The importance of distinguishing information from evidence/observations when formulating propositions.
        Sci. Justice. 2015; 55: 520-525
        • Gittelson S.
        • Kalafut T.
        • Myers S.
        • Taylor D.
        • Hicks T.
        • Taroni F.
        • Evett I.W.
        • Bright J.-A.
        • Buckleton J.
        A practical guide for the formulation of propositions in the Bayesian approach to DNA evidence interpretation in an adversarial environment.
        J. Forensic Sci. 2016; 61: 186-195
        • Thomsen A.R.
        • Hallenberg C.
        • Simonsen B.T.
        • Langkjær R.B.
        • Morling N.
        A report of the 2002–2008 paternity testing workshops of the English speaking working group of the International Society for Forensic Genetics.
        Forensic Sci. Int. Genet. 2009; 3: 214-221
        • Prieto L.
        • Haned H.
        • Mosquera A.
        • Crespillo M.
        • Alemañ M.
        • Aler M.
        • lvarez F.
        • Baeza-Richer C.
        • Dominguez A.
        • Doutremepuich C.
        • Farfán M.J.
        • Fenger-Grøn M.
        • García-Ganivet J.M.
        • González-Moya E.
        • Hombreiro L.
        • Lareu M.V.
        • Martínez-Jarreta B.
        • Merigioli S.
        • Milans Del Bosch P.
        • Morling N.
        • Muñoz-Nieto M.
        • Ortega-González E.
        • Pedrosa S.
        • Pérez R.
        • Solís C.
        • Yurrebaso I.
        • Gill P.
        Euroforgen-NoE collaborative exercise on LRmix to demonstrate standardization of the interpretation of complex DNA profiles.
        Forensic Sci. Int. Genet. 2014; 9: 47-54
        • O’Connor K.L.
        • Myers S.P.
        • Butts E.L.R.
        • Hill C.R.
        • Butler J.M.
        • Vallone P.M.
        Candidate reference family data: a tool for validating kinship analysis software.
        in: 21st International Symposium On Human Identification, San Antonio, TX, October 11–142010 (http://www.cstl.nist.gov/biotech/strbase/pub_pres/Promega2010_OConnor.pdf. http://www.cstl.nist.gov/biotech/strbase/kinship.htm)
        • Azevedo D.A.
        • Souza G.R.B.
        • Silva I.H.E.F.
        • Silva L.A.F.
        Genetic kinship analysis: a concordance study between calculations performed with the software Familias and algebraic formulas of the American Association of Blood Banks.
        Progress in Forensic Genetics 14: Proceedings of the 24th International ISFG Congress. 2011; : e186-e187