Advertisement
Research paper| Volume 25, P198-209, November 2016

Download started.

Ok

Massively parallel sequencing of 68 insertion/deletion markers identifies novel microhaplotypes for utility in human identity testing

  • Frank R. Wendt
    Correspondence
    Corresponding author at: Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, CBH−250, Fort Worth, TX,76107, USA.
    Affiliations
    Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
    Search for articles by this author
  • David H. Warshauer
    Affiliations
    Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711, USA
    Search for articles by this author
  • Xiangpei Zeng
    Affiliations
    Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
    Search for articles by this author
  • Jennifer D. Churchill
    Affiliations
    Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
    Search for articles by this author
  • Nicole M.M. Novroski
    Affiliations
    Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
    Search for articles by this author
  • Bing Song
    Affiliations
    Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
    Search for articles by this author
  • Jonathan L. King
    Affiliations
    Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
    Search for articles by this author
  • Bobby L. LaRue
    Affiliations
    Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA

    Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX, 77341, USA
    Search for articles by this author
  • Bruce Budowle
    Affiliations
    Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA

    Center of Excellence in Genomic Medicine (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
    Search for articles by this author
Published:September 20, 2016DOI:https://doi.org/10.1016/j.fsigen.2016.09.005

      Highlights

      • Length-based allele frequencies and heterozygosities are similar to previous U.S. population data for these 68 INDELs.
      • Sequence variation was observed adjacent to 42 INDELs.
      • Sequence variation generally increased heterozygosity and decreased single-locus random match probabilities.
      • Previously reported non-STR containing INDELs were shown to be part of short tandem repeats.
      • The STR Allele Identification Tool: Razor (STRait Razor) successfully mined massively parallel sequencing data for INDELs.

      Abstract

      Short tandem repeat (STR) loci are the traditional markers used for kinship, missing persons, and direct comparison human identity testing. These markers hold considerable value due to their highly polymorphic nature, amplicon size, and ability to be multiplexed. However, many STRs are still too large for use in analysis of highly degraded DNA. Small bi-allelic polymorphisms, such as insertions/deletions (INDELs), may be better suited for analyzing compromised samples, and their allele size differences are amenable to analysis by capillary electrophoresis. The INDEL marker allelic states range in size from 2 to 6 base pairs, enabling small amplicon size. In addition, heterozygote balance may be increased by minimizing preferential amplification of the smaller allele, as is more common with STR markers. Multiplexing a large number of INDELs allows for generating panels with high discrimination power. The Nextera™ Rapid Capture Custom Enrichment Kit (Illumina, Inc., San Diego, CA) and massively parallel sequencing (MPS) on the Illumina MiSeq were used to sequence 68 well-characterized INDELs in four major US population groups. In addition, the STR Allele Identification Tool: Razor (STRait Razor) was used in a novel way to analyze INDEL sequences and detect adjacent single nucleotide polymorphisms (SNPs) and other polymorphisms. This application enabled the discovery of unique allelic variants, which increased the discrimination power and decreased the single-locus random match probabilities (RMPs) of 22 of these well-characterized INDELs which can be considered as microhaplotypes. These findings suggest that additional microhaplotypes containing human identification (HID) INDELs may exist elsewhere in the genome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Budowle B.
        • van Daal A.
        Forensically relevant SNP classes.
        Biotechniques. 2008; 44 (610. 10.2144/000112806. Review. PubMed PMID: 18474034): 603-608
        • LaRue B.L.
        • Ge J.
        • King J.L.
        • Budowle B.
        A validation study of the Qiagen Investigator DIPplex® kit; an INDEL-based assay for human identification.
        Int. J. Legal Med. 2012; 126 (Epub 2012 Jan 15. PubMed PMID: 22249274): 533-540https://doi.org/10.1007/s00414-012-0667-9
        • LaRue B.L.
        • Lagacé R.
        • Chang C.W.
        • Holt A.
        • Hennessy L.
        • Ge J.
        • King J.L.
        • Chakraborty R.
        • Budowle B.
        Characterization of 114 insertion/deletion (INDEL) polymorphisms, and selection for a global INDEL panel for human identification.
        Legal Med. (Tokyo). 2014; 16 (Epub 2013 Nov 1. PubMed PMID: 24296037): 26-32https://doi.org/10.1016/j.legalmed.2013.10.006
        • Mullaney J.M.
        • Mills R.E.
        • Pittard W.S.
        • Devine S.E.
        Small insertions and deletions (INDELs) in human genomes.
        Hum. Mol. Genet. 2010; 19 (Epub 2010 Sep 21. Review. PubMed PMID: 20858594 PubMed Central PMCID: PMC2953750): R131-R136https://doi.org/10.1093/hmg/ddq400
        • Pena H.B.
        • Pena S.D.
        Automated genotyping of a highly informative panel of 40 short insertion-deletion polymorphisms resolved in polyacrylamide gels for forensic identification and kinship analysis.
        Transfus. Med. Hemother. 2012; 39 (Epub 2012 May 11. PubMed PMID: 22851937 PubMed Central PMCID: PMC3375136): 211-216
        • Pereira R.
        • Phillips C.
        • Alves C.
        • Amorim A.
        • Carracedo A.
        • Gusmão L.
        A new multiplex for human identification using insertion/deletion polymorphisms.
        Electrophoresis. 2009; 30 (PubMed PMID: 19862748): 3682-3690https://doi.org/10.1002/elps.200900274
        • Gettings K.B.
        • Kiesler K.M.
        • Vallone P.M.
        Performance of a next generation sequencing SNP assay on degraded DNA.
        Forensic Sci. Int. Genet. 2015; 19 (Epub 2015 May 27. PubMed PMID: 26036183): 1-9https://doi.org/10.1016/j.fsigen.2015.04.010
        • Pereira R.
        • Gusmão L.
        Capillary electrophoresis of 38 noncoding biallelic mini-Indels for degraded samples and as complementary tool in paternity testing.
        Methods Mol. Biol. 2012; 830 (PubMed PMID: 22139658): 141-157https://doi.org/10.1007/978-1-61779-461-2_10
        • Wendt F.R.
        • Zeng X.
        • Churchill J.D.
        • King J.L.
        • Budowle B.
        Analysis of short tandem repeat and single nucleotide polymorphism loci from single-source samples using a custom HaloPlex target enrichment system panel.
        Am. J. Forensic Med. Pathol. 2016; 37 (PubMed PMID: 27075592): 99-107https://doi.org/10.1097/PAF.0000000000000228
      1. F.R. Wendt, J.D. Churchill, N.M.M. Novroski, J.L. King, J. Hg, R.F. Oldt, K.L. McCulloh, J.A. Weise, D.G. Smith, S. Kanthaswamy, B. Budowle, Genetic analysis of the Yavapai Native Americans from West-Central Arizona, Forensic Sci. Int. Genet. 10.1016/j.fsigen.2016.05.008.

        • Quail M.A.
        • Smith M.
        • Coupland P.
        • et al.
        A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers.
        BMC Genomics. 2012; 24 (PubMed PMID: 22827831 PubMed Central PMCID: PMC3431227): 341https://doi.org/10.1186/1471-2164-13-341
        • Zeng X.
        • King J.L.
        • Stoljarova M.
        • et al.
        High sensitivity multiplex short tandem repeat loci analyses with massively parallel sequencing.
        Forensic Sci. Int. Genet. 2015; 16 (Epub 2014 Dec 3. PubMed PMID: 25528025): 38-47https://doi.org/10.1016/j.fsigen.2014.11.022
        • King J.L.
        • LaRue B.L.
        • Novroski N.M.
        • et al.
        High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq.
        Forensic Sci. Int. Genet. 2014; 12 (Epub 2014 Jun 7. PubMed PMID: 24973578): 128-135https://doi.org/10.1016/j.fsigen.2014.06.001
      2. S.L. Fordyce, H.S. Mogensen, C. Børsting, et al., Second-generation sequencing of forensic STRs using the Ion Torrent™ HID STR 10-plex and the Ion PGM™ Forensic Sci. Int. Genet. (2015) J 438 an;14 132-40. 10.1016/j.fsigen.2014.09.020 Epub 2014 Oct 5. PubMed PMID: 25450784.

        • Churchill J.D.
        • Chang J.
        • Ge J.
        • et al.
        Blind study evaluation illustrates utility of the Ion PGM™ system for use in human identity DNA typing.
        Croat. Med. J. 2015; 56 (PubMed PMID: 26088846): 218-229
        • Warshauer D.H.
        • King J.L.
        • Budowle B.
        STRait Razor v2.0: the improved STR allele identification tool–razor.
        Forensic Sci. Int. Genet. 2015; 14 (Epub 2014 Oct 22. PubMed PMID: 25450790): 182-186https://doi.org/10.1016/j.fsigen.2014.10.011
        • QIAamp®
        DNA Mini and Blood Mini Handbook.
        3rd edition. 2012
        • Zeng X.
        • Warshauer D.H.
        • King J.L.
        • Churchill J.D.
        • Chakraborty R.
        • Budowle B.
        Empirical testing of a 23-AIMs panel of SNPs for ancestry evaluations in four major US populations.
        Int. J. Legal Med. 2016; 130 (Epub 2016 Feb 25. PubMed PMID: 26914801): 891-896https://doi.org/10.1007/s00414-016-1333-4
        • Warshauer D.H.
        • Churchill J.D.
        • Novroski N.
        • King J.L.
        • Budowle B.
        Novel Y-chromosome short tandem repeat variants detected through the use of massively parallel sequencing.
        Genomics Proteomics Bioinform. 2015; 13 (Epub 2015 Sep 21. PubMed PMID: 26391384 PubMed Central PMCID: PMC4610967): 250-257https://doi.org/10.1016/j.gpb.2015.08.001
        • Sherry S.T.
        • Ward M.H.
        • Kholodov M.
        • Baker J.
        • Phan L.
        • Smigielski E.M.
        • Sirotkin K.
        dbSNP: the NCBI database of genetic variation.
        Nucleic Acids Res. 2001 Jan 1; 29: 308-311
      3. MiSeq System User Guide.
        • Thorvaldsdóttir H.
        • Robinson J.T.
        • Mesirov J.P.
        Integrative Genomics Viewer (IGV): high performance genomics data visualization and exploration.
        Brief. Bioinform. 2013; 14 (Epub 2012 Apr 19. PubMed PMID: 22517427 PubMed Central PMCID: PMC3603213): 178-192https://doi.org/10.1093/bib/bbs017
        • Robinson J.T.
        • Thorvaldsdóttir H.
        • Winckler W.
        • et al.
        Integrative genomics viewer.
        Nat. Biotechnol. 2011; 29 (PubMed PMID: 21221095 PubMed Central PMCID: PMC3346182): 24-26https://doi.org/10.1038/nbt.1754
        • Li H.
        • Handsaker B.
        • Wysoker A.
        • Fennell T.
        • Ruan J.
        • Homer N.
        • Marth G.
        • Abecasis G.
        • Durbin R.
        1000 genome project data processing subgroup the sequence alignment/map format and SAMtools.
        Bioinformatics. 2009; 25 (Epub 2009 Jun 8. PubMed PMID: 19505943 PubMed Central PMCID: PMC2723002): 2078-2079https://doi.org/10.1093/bioinformatics/btp352
        • Li H.
        A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data.
        Bioinformatics. 2011; 27 (Epub 2011 Sep 8. PubMed PMID: 21903627 PubMed Central PMCID: PMC3198575): 2987-2993https://doi.org/10.1093/bioinformatics/btr509
        • Li H.
        • Durbin R.
        Fast and accurate short read alignment with Burrows-Wheeler transform.
        Bioinformatics. 2009; 25 (Epub 2009 May 18. PubMed PMID: 19451168 PubMed Central PMCID: PMC2705234): 1754-1760https://doi.org/10.1093/bioinformatics/btp324
        • McKenna A.
        • Hanna M.
        • Banks E.
        • Sivachenko A.
        • Cibulskis K.
        • Kernytsky A.
        • Garimella K.
        • Altshuler D.
        • Gabriel S.
        • Daly M.
        • DePristo M.A.
        The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
        Genome Res. 2010; 20 (Epub 2010 Jul 19. PubMed PMID: 20644199 PubMed Central PMCID: PMC2928508): 1297-1303https://doi.org/10.1101/gr.107524.110
      4. Genetic Data Analysis Software.
        Lewis and Zaykin, 1999
        • Karolchik D.
        • Hinrichs A.S.
        • Kent W.J.
        The UCSC genome browser.
        Curr. Protoc. Bioinform. 2012; (Chapter 1:Unit1.4. 10.1002/0471250953. bi0104s40. PubMed PMID: 23255150)
        • Leclercq S.
        • Rivals E.
        • Jarne P.
        DNA slippage occurs at microsatellite loci without minimal threshold length in humans: a comparative genomic approach.
        Genome Biol. Evol. 2010; 12 (PubMed PMID: 20624737 PubMed Central PMCID: PMC2997547): 325-335https://doi.org/10.1093/gbe/evq023
        • Fan H.
        • Chu J.Y.
        A brief review of short tandem repeat mutation.
        Genomics Proteomics Bioinform. 2007; 5 (Review. PubMed PMID: 17572359): 7-14
        • Chakraborty R.
        • Kimmel M.
        • Stivers D.N.
        • Davison L.J.
        • Deka R.
        Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci.
        Proc. Natl. Acad. Sci. U. S. A. 1997; 94 (PubMed PMID: 9023379 PubMed Central PMCID: PMC19636): 1041-1046
        • Kidd K.K.
        • Pakstis A.J.
        • Speed W.C.
        • Lagacé R.
        • Chang J.
        • Wootton S.
        • Haigh E.
        • Kidd J.R.
        Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics.
        Forensic Sci. Int. Genet. 2014; 12 (Epub 2014 Jul 1. PubMed PMID: 25038325): 215-224https://doi.org/10.1016/j.fsigen.2014.06.014
        • Kidd K.K.
        • Speed W.C.
        Criteria for selecting microhaplotypes: mixture detection and deconvolution.
        Invest. Genet. 2015; 6 (eCollection 2015. PubMed PMID: 25750707 PubMed Central PMCID: PMC4351693)https://doi.org/10.1186/s13323-014-0018-3
        • Ge J.
        • Budowle B.
        • Planz J.V.
        • Chakraborty R.
        Haplotype block: a new type of forensic DNA markers.
        Int. J. Legal Med. 2010; 124 (Epub 2009 Dec 22. PubMed PMID: 20033199): 353-361https://doi.org/10.1007/s00414-009-0400-5
        • Chakraborty R.
        Sample size requirements for addressing the population genetic issues of forensic use of DNA typing.
        Hum. Biol. 1992; 64 (PubMed PMID: 1559686): 141-159
        • Tomas C.
        • Mogensen H.S.
        • Friis S.L.
        • Hallenberg C.
        • Stene M.C.
        • Morling N.
        Concordance study and population frequencies for 16 autosomal STRs analyzed with PowerPlex® ESI 17 and AmpFℓSTR® NGM SElect™ in Somalis, Danes and Greenlanders.
        Forensic Sci. Int. Genet. 2014; 11 (Epub 2014 Apr 18. PubMed PMID: 24810256): e18-e21https://doi.org/10.1016/j.fsigen.2014.04.004
        • Turrina S.
        • Ferrian M.
        • Caratti S.
        • De Leo D.
        Evaluation of genetic parameters of 22 autosomal STR loci (PowerPlex® Fusion System) in a population sample from Northern Italy.
        Int. J. Legal Med. 2014; 128 (Epub 2013 Nov 2. PubMed PMID: 24185983): 281-283https://doi.org/10.1007/s00414-013-0934-4