Advertisement
Research paper| Volume 26, P12-20, January 2017

Download started.

Ok

Individualization of pubic hair bacterial communities and the effects of storage time and temperature

Published:October 07, 2016DOI:https://doi.org/10.1016/j.fsigen.2016.09.006

      Highlights

      • Individual pubic hair microbiomes are gender-biased but can be repeatedly identified from independent samples taken at the same time.
      • The level of intra-individual variation differs between individuals and affects the ability to predict some individuals.
      • Short term storage of pubic hair at various temperatures does not significantly affect the recovered bacterial microbiome.

      Abstract

      A potential application of microbial genetics in forensic science is detection of transfer of the pubic hair microbiome between individuals during sexual intercourse using high-throughput sequencing. In addition to the primary need to show whether the pubic hair microbiome is individualizing, one aspect that must be addressed before using the microbiome in criminal casework involves the impact of storage on the microbiome of samples recovered for forensic testing. To test the effects of short-term storage, pubic hair samples were collected from volunteers and stored at room temperature (∼20 °C), refrigerated (4 °C), and frozen (–20 °C) for 1 week, 2 weeks, 4 weeks, and 6 weeks along with a baseline sample. Individual microbial profiles (R2 = 0.69) and gender (R2 = 0.17) were the greatest sources of variation between samples. Because of this variation, individual and gender could be predicted using Random Forests supervised classification in this sample set with an overall error rate of 2.7% ±  5.8% and 1.7% ± 5.2%, respectively. There was no statistically significant difference attributable to time of sampling or temperature of storage within individuals. Further work on larger sample sets will quantify the temporal consistency of individual profiles and define whether it is plausible to detect transfer between sexual partners. For short-term storage (≤6 weeks), recovery of the microbiome was not affected significantly by either storage time or temperature, suggesting that investigators and crime laboratories can use existing evidence storage methods.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Consortium T.H.M.P
        Structure function and diversity of the healthy human microbiome.
        Nature. 2013; 486: 207-214
        • Costello E.K.
        • Lauber C.L.
        • Hamady M.
        • Fierer N.
        • Gordon J.I.
        • Knight R.
        Bacterial community variation in human body habitats across space and time.
        Science. 2009; 326: 1694-1697
        • Califf K.
        • Gonzalez A.
        • Knight R.
        • Caporaso J.G.
        The human microbiome: getting personal.
        Microbe. 2014; 9: 410-415
        • Fierer N.
        • Lauber C.L.
        • Zhou N.
        • McDonald D.
        • Costello E.K.
        • Knight R.
        Forensic identification using skin bacterial communities.
        PNAS. 2010; 107: 6477-6481
        • Lax S.
        • Hampton-Marcell J.T.
        • Gibbons S.M.
        • Colares G.B.
        • Smith D.
        • Eisen J.A.
        • et al.
        Forensic analysis of the microbiome of phones and shoes.
        Microbiome. 2015; 3: 1-8
        • Heath L.E.
        • Saunders V.A.
        Assessing the potential of bacterial DNA profiling for forensic soil comparisons.
        J. Forensic Sci. 2006; 51: 1062-1068
        • Horswell J.
        • Cordiner S.J.
        • Maas E.W.
        • Martin T.M.
        • Sutherland K.B.W.
        • Speir T.W.
        • et al.
        Forensic comparison of soils by bacterial community profiling.
        J. Forensic Sci. 2002; 47: 350-353
        • Meyers M.S.
        • Foran D.R.
        Spatial and temporal influences on bacterial profiling of forensic soil samples.
        J. Forensic Sci. 2008; 53: 652-660
        • Damaan F.E.
        • Williams D.E.
        • Layton A.C.
        Potential use of bacterial community succession in decaying human bone for estimating postmortem interval.
        J. Forensic Sci. 2015; 60: 844-850
        • Hauther K.A.
        • Cobaugh K.L.
        • Jantz L.M.
        • Sparer T.E.
        • DeBruyn J.M.
        Estimating time since death from postmortem human gut microbial communities.
        J. Forensic Sci. 2015; 60: 1234-1240
        • Mayntz-Press K.A.
        • Sims L.M.
        • Hall A.
        • Ballantyne J.
        Y-STR profiling in extended interval (≥3 days) postcoital cervicovaginal samples.
        J. Forensic Sci. 2008; 53: 342-348
        • Pfeiffer H.
        • Huhne J.
        • Ortmann C.
        • Waterkamp K.
        • Brinkmann B.
        Mitochondrial DNA typing from human axillary, pubic and head hair shafts – success rates and sequence comparisons.
        Int. J. Legal Med. 1999; 112: 287-290
        • Budowle B.
        • Allard M.W.
        • Wilson M.R.
        • Chakraborty R.
        Forensics and mitochondrial DNA applications, debates, and foundations.
        Annu. Rev. Genomics Hum. Genet. 2003; 4: 119-141
        • Foran D.
        • Starrs J.
        In search of the Boston strangler: genetic evidence from the exhumation of Mary Sullivan.
        Med. Sci. Law. 2004; 44: 287-290
        • Tridico S.
        • Murray D.C.
        • Addison J.
        • Kirkbride K.P.
        • Bunce M.
        Metagenomic analyses of bacteria on human hairs: a qualitative assessment for applications in forensic science.
        Invest. Genet. 2014; 5
        • Lauber C.L.
        • Zhou N.
        • Gordon J.I.
        • Knight R.
        • Fierer N.
        Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples.
        FEMS Microbiol. Lett. 2010; 307: 80-86
        • Rubin B.E.
        • Gibbons S.M.
        • Kennedy S.
        • Hapton-Marcell J.
        • Owens S.
        • Gilbert J.A.
        Investigating the impact of storage conditions on microbial community composition in soil samples.
        PLoS One. 2013; 8: e70460
        • Flores R.
        • Shi J.
        • Yu G.
        • Ma B.
        • Ravel J.
        • Goedert J.J.
        • et al.
        Collection media and delayed freezing effects on microbial composition of human stool.
        Microbiome. 2015; 3
        • Gorzelak M.A.
        • Gill S.K.
        • Tasnim N.
        • Ahmadi-Vand Z.
        • Jay M.
        • Gibson D.L.
        Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool.
        PLoS One. 2015; 10: e0134802
        • Bai G.
        • Gajer P.
        • Nandy M.
        • Ma B.
        • Yang H.
        • Sakamoto J.
        • et al.
        Comparison of storage conditions for human vaginal microbiome studies.
        PLoS One. 2012; 7: e36934
        • Hale V.L.
        • Tan C.L.
        • Knight R.
        • Amato K.R.
        Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks.
        J. Microbiol. Methods. 2015; 113: 16-26
        • Weese J.S.
        • Jalali M.
        Evaluation of the impact of refrigeration on next generation sequencing-based assessment of the canine and feline fecal microbiota.
        BMC Vet. Res. 2014; 10: 230
      1. Illumina 16S Metagenomic Sequencing Library Preparation. Part # 15044223 Rev. B ed.

        • Klindworth A.
        • Pruesse E.
        • Schweer T.
        • Peplles J.
        • Quast C.
        • Horn M.
        • et al.
        Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies.
        Nucleic Acids Res. 2013; 41: 1-11
      2. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ .

        • Masella A.P.
        • Bartram A.K.
        • Truszkowski J.M.
        • Brown D.G.
        • Neufeld J.D.
        PANDAseq: paired-end assembler for Illumina sequences.
        BMC Bioinf. 2012; 13
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • Bittinger K.
        • Bushman F.D.
        • Costello E.K.
        • et al.
        QIIME allows analysis of high-throughput community sequencing data.
        Nat. Methods. 2010; 7: 334-336
        • Edgar R.C.
        • Haas B.J.
        • Clemente J.C.
        • Quince C.
        • Knight R.
        UCHIME improves sensitivity and speed of chimera detection.
        Bioinformatics. 2011; 27: 2194-2200
        • Haas B.J.
        • Gevers D.
        • Earl A.M.
        • Feldgarden M.
        • Ward D.V.
        • Giannoukos G.
        • et al.
        Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons.
        Genome Res. 2011; 21: 494-504
        • Caporaso J.G.
        • Bittinger K.
        • Bushman F.D.
        • DeSantis T.Z.
        • Andersen G.L.
        • Knight R.
        PyNAST: a flexible tool for aligning sequences to a template alignment.
        Bioinformatics. 2010; 26: 266-267
        • DeSantis T.
        • Hugenholtz P.
        • Larsen N.
        • Rojas M.
        • Brodie E.
        • Keller K.
        • et al.
        Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB.
        Appl. Environ. Microbiol. 2006; 72: 5069-5072
        • Anderson M.J.
        A new method for non-parametric multivariate analysis of variance.
        Austral Ecol. 2001; 26: 32-46
        • Liaw A.
        • Wiener M.
        Classification and regression by randomforest.
        R News. 2002; 2: 18-22
        • Anders S.
        • Huber W.
        Differential expression analysis for sequence count data.
        Genome Biol. 2010; 11: R106
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
        Genome Biol. 2014; 15: 550
        • Ross M.G.
        • Russ C.
        • Costello M.
        • Hollinger A.
        • Lennon N.J.
        • Hegarty R.
        • et al.
        Characterizing and measuring bias in sequence data.
        Genome Biol. 2013; 14: R51
        • Jones M.B.
        • Highlander S.K.
        • Anderson E.L.
        • Li W.
        • Dayrit M.
        • Klitgord N.
        • et al.
        Library preparation methodology can influence genomic and function predictions in human microbiome research.
        PNAS. 2015; 112: 14024-14029
        • Bartram A.K.
        • Lynch M.D.
        • Stearns J.C.
        • Moreno-Hagelsieb G.
        • Neufeld J.D.
        Generation of mulitmillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads.
        Appl. Environ. Microbiol. 2011; 77: 3846-3852
        • Quail M.
        • Smith M.
        • Coupland P.
        • Otto T.D.
        • Harris S.
        • Connor T.R.
        • et al.
        A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers.
        BMC Genomics. 2012; 13: 314