Advertisement
Research paper| Volume 26, P1-11, January 2017

Considering DNA damage when interpreting mtDNA heteroplasmy in deep sequencing data

  • Molly M. Rathbun
    Affiliations
    Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States
    Search for articles by this author
  • Jennifer A. McElhoe
    Affiliations
    Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States
    Search for articles by this author
  • Walther Parson
    Affiliations
    Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States

    The Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
    Search for articles by this author
  • Mitchell M. Holland
    Correspondence
    Corresponding author.
    Affiliations
    Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States
    Search for articles by this author
Published:September 28, 2016DOI:https://doi.org/10.1016/j.fsigen.2016.09.008

      Highlights

      • Miscoding lesions accumulate as storage condition and targeted DNA damage worsens.
      • The majority of miscoding lesions have a 1–2% minor variant frequency.
      • Miscoding lesions are typically not replicated from the same DNA extract.
      • Miscoding lesions reduce the mtDNA heteroplasmy transition:transversion ratio.
      • Sequences with DNA damage may require modified heteroplasmy reporting thresholds.

      Abstract

      Resolution of mitochondrial (mt) DNA heteroplasmy is now possible when applying a massively parallel sequencing (MPS) approach, including minor components down to 1%. However, reporting thresholds and interpretation criteria will need to be established for calling heteroplasmic variants that address a number of important topics, one of which is DNA damage. We assessed the impact of increasing amounts of DNA damage on the interpretation of minor component sequence variants in the mtDNA control region, including low-level mixed sites. A passive approach was used to evaluate the impact of storage conditions, and an active approach was employed to accelerate the process of hydrolytic damage (for example, replication errors associated with depurination events). The patterns of damage were compared and assessed in relation to damage typically encountered in poor quality samples. As expected, the number of miscoding lesions increased as conditions worsened. Single nucleotide polymorphisms (SNPs) associated with miscoding lesions were indistinguishable from innate heteroplasmy and were most often observed as 1–2% of the total sequencing reads. Numerous examples of miscoding lesions above 2% were identified, including two complete changes in the nucleotide sequence, presenting a challenge when assessing the placement of reporting thresholds for heteroplasmy. To mitigate the impact, replication of miscoding lesions was not observed in stored samples, and was rarely seen in data associated with accelerated hydrolysis. In addition, a significant decrease in the expected transition:transversion ratio was observed, providing a useful tool for predicting the presence of damage-induced lesions. The results of this study directly impact MPS analysis of minor sequence variants from poorly preserved DNA extracts, and when biological samples have been exposed to agents that induce DNA damage. These findings are particularly relevant to clinical and forensic investigations.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dabney J.
        • Meyer M.
        • Pääbo S.
        Ancient DNA damage.
        Cold Spring Harb. Perspect. Biol. 2013; 5https://doi.org/10.1101/cshperspect.a012567
        • Melton T.
        • Holland C.
        • Holland M.
        Forensic mitochondrial DNA analysis: current practice and future potential.
        Forensic Sci. Rev. 2012; 24: 101-122
        • Lindahl T.
        • Nyberg B.
        Rate of depurination of native deoxyribonucleic acid.
        Biochemistry. 1972; 11: 3610-3618https://doi.org/10.1021/bi00769a018
        • Lindahl T.
        • Karlström O.
        Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution.
        Biochemistry. 1973; 12: 5151-5154https://doi.org/10.1021/bi00749a020
        • Cadet J.
        • Sage E.
        • Douki T.
        Ultraviolet radiation-mediated damage to cellular DNA.
        Mutat. Res. 2005; 571: 3-17https://doi.org/10.1016/j.mrfmmm.2004.09.012
        • Cooke M.S.
        • Evans M.D.
        • Dizdaroglu M.
        • Lunec J.
        Oxidative DNA damage: mechanisms, mutation, and disease.
        FASEB J. 2003; 17: 1195-1214https://doi.org/10.1096/fj.02-0752rev
        • Fattorini P.
        • Marrubini G.
        • Sorçaburu-Cigliero S.
        • Pitacco P.
        • Grignani P.
        • Previderè C.
        CE analysis and molecular characterisation of depurinated DNA samples.
        Electrophoresis. 2011; 32: 3042-3052https://doi.org/10.1002/elps.201100130
        • Gilbert M.T.P.
        • Hansen A.J.
        • Willerslev E.
        • Rudbeck L.
        • Barnes I.
        • Lynnerup N.
        • Cooper A.
        Characterization of genetic miscoding lesions caused by postmortem damage.
        Am. J. Hum. Genet. 2003; 72: 48-61https://doi.org/10.1086/345379
        • Briggs A.W.
        • Stenzel U.
        • Johnson P.L.F.
        • Green R.E.
        • Kelso J.
        • Prüfer K.
        • Meyer M.
        • Krause J.
        • Ronan M.T.
        • Lachmann M.
        • Pääbo S.
        Patterns of damage in genomic DNA sequences from a Neandertal.
        Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 14616-14621https://doi.org/10.1073/pnas.0704665104
        • Orlando L.
        • Ginolhac A.
        • Raghavan M.
        • Vilstrup J.
        • Rasmussen M.
        • Magnussen K.
        • Steinmann K.E.
        • Kapranov P.
        • Thompson J.F.
        • Zazula G.
        • Froese D.
        • Moltke I.
        • Shapiro B.
        • Hofreiter M.
        • Al-Rasheid K.A.S.
        • Gilbert M.T.P.
        • Willerslev E.
        True single-molecule DNA sequencing of a pleistocene horse bone.
        Genome Res. 2011; 21: 1705-1719https://doi.org/10.1101/gr.122747.111
        • Overballe-Petersen S.
        • Orlando L.
        • Willerslev E.
        Next-generation sequencing offers new insights into DNA degradation.
        Trends Biotechnol. 2012; 30: 364-368https://doi.org/10.1016/j.tibtech.2012.03.007
        • Duggan A.T.
        • Evans B.
        • Friedlaender F.R.
        • Friedlaender J.S.
        • Koki G.
        • Merriwether D.A.
        • Kayser M.
        • Stoneking M.
        Maternal history of oceania from complete mtDNA genomes: contrasting ancient diversity with recent homogenization due to the Austronesian expansion.
        Am. J. Hum. Genet. 2014; 94: 721-733https://doi.org/10.1016/j.ajhg.2014.03.014
        • Fregel R.
        • Cabrera V.
        • Larruga J.M.
        • Abu-Amero K.K.
        • González A.M.
        Carriers of mitochondrial DNA macrohaplogroup N lineages reached Australia around 50 000 years ago following a northern Asian route.
        PLoS One. 2015; 10https://doi.org/10.1371/journal.pone.0129839
        • King T.E.
        • Fortes G.G.
        • Balaresque P.
        • Thomas M.G.
        • Balding D.
        • Maisano Delser P.
        • Neumann R.
        • Parson W.
        • Knapp M.
        • Walsh S.
        • Tonasso L.
        • Holt J.
        • Kayser M.
        • Appleby J.
        • Forster P.
        • Ekserdjian D.
        • Hofreiter M.
        • Schürer K.
        Identification of the remains of King Richard III.
        Nat. Commun. 2014; 5: 1-8https://doi.org/10.1038/ncomms6631
        • Schon E.A.
        • Bonilla E.
        • DiMauro S.
        Mitochondrial DNA mutations and pathogenesis.
        J. Bioenergy Biomembr. 1997; 29: 131-149
        • Brierley E.J.
        • Johnson M.A.
        • Lightowlers R.N.
        • James O.F.
        • Turnbull D.M.
        Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle.
        Ann. Neurol. 1998; 43: 217-223https://doi.org/10.1002/ana.410430212
        • Park C.B.
        • Larsson N.-G.
        Mitochondrial DNA mutations in disease and aging.
        J. Cell Biol. 2011; 193: 809-818https://doi.org/10.1083/jcb.201010024
        • Wallace D.C.
        • Chalkia D.
        Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease.
        Cold Spring Harb. Perspect. Biol. 2013; 5 (a021220)https://doi.org/10.1101/cshperspect.a021220
        • Rebolledo-Jaramillo B.
        • Su M.S.-W.
        • Stoler N.
        • McElhoe J.A.
        • Dickins B.
        • Blankenberg D.
        • Korneliussen T.S.
        • Chiaromonte F.
        • Nielsen R.
        • Holland M.M.
        • Paul I.M.
        • Nekrutenko A.
        • Makova K.D.
        Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA.
        Proc. Natl. Acad. Sci.U. S. A. 2014; 111: 15474-15479https://doi.org/10.1073/pnas.1409328111
        • Engelstad K.
        • Sklerov M.
        • Kriger J.
        • Sanford A.
        • Grier J.
        • Ash D.
        • Egli D.
        • DiMauro S.
        • Thompson J.L.P.
        • Sauer M.V.
        • Hirano M.
        Attitudes toward prevention of mtDNA-related diseases through oocyte mitochondrial replacement therapy.
        Hum. Reprod. 2016; 5: 1058-1065https://doi.org/10.1093/humrep/dew033
        • Anderson S.
        • Bankier A.T.
        • Barrell B.G.
        • deBruijn M.H.L.
        • Coulson A.R.
        • Drouin J.
        • Eperon I.C.
        • Nierlich D.P.
        • Roe B.A.
        • Sanger F.
        • Schreier P.H.
        • Smith A.J.H.
        • Staden R.
        • Young I.G.
        Sequence and organization of the human mitochondrial genome.
        Nature. 1981; 290: 457-465https://doi.org/10.1038/290457a0
        • Andrews R.M.
        • Kubacka I.
        • Chinnery P.F.
        • Lightowlers R.N.
        • Turnbull D.M.
        • Howell N.
        Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA.
        Nat. Genet. 1999; 23: 147https://doi.org/10.1038/13779
        • Holland M.M.
        • Parsons T.J.
        Mitochondrial DNA sequence analysis—validation and use for forensic casework.
        Forensic Sci. Rev. 1999; 11: 21-50
        • Ivanov P.L.
        • Wadhams M.J.
        • Roby R.K.
        • Holland M.M.
        • Weedn V.W.
        • Parsons T.J.
        Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II.
        Nat. Genet. 1996; 41: 417-420
        • Holland M.M.
        • McQuillan M.R.
        • O’Hanlon K.A.
        Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy.
        Croat. Med. J. 2011; 52: 299-313https://doi.org/10.3325/cmj.2011.52.299
        • McElhoe J.A.
        • Holland M.M.
        • Makova K.D.
        • Su M.S.-W.
        • Paul I.M.
        • Baker C.H.
        • Faith S.A.
        • Young B.
        Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq.
        Forensic Sci. Int. Genet. 2014; 13C: 20-29https://doi.org/10.1016/j.fsigen.2014.05.007
        • Parson W.
        • Strobl C.
        • Huber G.
        • Zimmermann B.
        • Gomes S.M.
        • Souto L.
        • Fendt L.
        • Delport R.
        • Langit R.
        • Wootton S.
        • Lagacé R.
        • Irwin J.
        Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM).
        Forensic Sci. Int. Genet. 2013; 7: 543-549https://doi.org/10.1016/j.fsigen.2013.06.003
        • Just R.S.
        • Irwin J.A.
        • Parson W.
        Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing.
        Forensic Sci. Int. Genet. 2015; https://doi.org/10.1016/j.fsigen.2015.05.003
      1. Illumina Inc., Nextera® XT DNA Sample Preparation Guide, Part # 150 (2012).

      2. EMPOP mtDNA database v3/R11, (2015) empop.online (accessed 20.04.16).

        • Schirmer M.
        • Ijaz U.Z.
        • D’Amore R.
        • Hall N.
        • Sloan W.T.
        • Quince C.
        Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform.
        Nucleic Acids Res. 2015; 43https://doi.org/10.1093/nar/gku1341
        • Ravanat J.-L.
        • Douki T.
        • Duez P.
        • Gremaud E.
        • Herbert K.
        • Hofer T.
        • Lasserre L.
        • Saint-Pierre C.
        • Favier A.
        • Cadet J.
        Cellular background level of 8-oxo-7, 8-dihydro-2′-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up.
        Carcinogenesis. 2002; 23: 1911-1918https://doi.org/10.1093/carcin/23.11.1911
        • Lindahl T.
        Instability and decay of the primary structure of DNA.
        Nature. 1993; 362
      3. FAQs LA Taq™ Polymerase, (n.d.). http://bio.lonza.com/uploads/tx_mwaxmarketingmaterial/Lonza_ManualsProductInstructions_FAQs_LA_Taq.pdf (accessed 10.11.15).

        • Hansen A.
        • Willerslev E.
        • Wiuf C.
        • Mourier T.
        • Arctander P.
        Statistical evidence for miscoding lesions in ancient DNA templates.
        Mol. Biol. Evol. 2001; 18: 262-265https://doi.org/10.1093/oxfordjournals.molbev.a003800
        • Gilbert M.T.P.
        • Binladen J.
        • Miller W.
        • Wiuf C.
        • Willerslev E.
        • Poinar H.
        • Carlson J.E.
        • Leebens-Mack J.H.
        • Schuster S.C.
        Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis.
        Nucleic Acids Res. 2007; 35: 1-10https://doi.org/10.1093/nar/gkl483
        • Kobayashi A.
        • Kitaoka M.
        • Hayashi K.
        Novel PCR-mediated mutagenesis employing DNA containing a natural abasic site as a template and translesional Taq DNA polymerase.
        J. Biotechnol. 2005; 116: 227-232https://doi.org/10.1016/j.jbiotec.2004.10.016
        • Sikorsky J.A.
        • Primerano D.A.
        • Fenger T.W.
        • Denvir J.
        DNA damage reduces Taq DNA polymerase fidelity and PCR amplification efficiency.
        Biochem. Biophys. Res. Commun. 2007; 355: 431-437https://doi.org/10.1016/j.bbrc.2007.01.169
        • Irwin J.A.
        • Saunier J.L.
        • Niederstatter H.
        • Strouss K.M.
        • Sturk K.A.
        • Diegoli T.M.
        • Brandstatter A.
        • Parson W.
        • Parsons T.J.
        Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples.
        J. Mol. Evol. 2009; 68: 516-527https://doi.org/10.1007/s00239-009-9227-4
        • Sawyer S.
        • Krause J.
        • Guschanski K.
        • Savolainen V.
        • Pääbo S.
        Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA.
        PLoS One. 2012; 7https://doi.org/10.1371/journal.pone.0034131
        • Olivieri C.
        • Ermini L.
        • Rizzi E.
        • Corti G.
        • Bonnal R.
        • Luciani S.
        • Marota I.
        • De Bellis G.
        • Rollo F.
        Characterization of nucleotide misincorporation patterns in the Iceman’s mitochondrial DNA.
        PLoS One. 2010; 5https://doi.org/10.1371/journal.pone.0008629
        • Hofreiter M.
        • Jaenicke V.
        • Serre D.
        • Haeseler Av A.
        • Pääbo S.
        DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA.
        Nucleic Acids Res. 2001; 29: 4793-4799https://doi.org/10.1093/nar/29.23.4793
        • Stiller M.
        • Green R.E.
        • Ronan M.
        • Simons J.F.
        • Du L.
        • He W.
        • Egholm M.
        • Rothberg J.M.
        • Keates S.G.
        • Keats S.G.
        • Ovodov N.D.
        • Antipina E.E.
        • Baryshnikov G.F.
        • Kuzmin Y.V.
        • Vasilevski A.A.
        • Wuenschell G.E.
        • Termini J.
        • Hofreiter M.
        • Jaenicke-Després V.
        • Pääbo S.
        Patterns of nucleotide misincorporations during enzymatic amplification and direct large-scale sequencing of ancient DNA.
        Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 13578-13584https://doi.org/10.1073/pnas.0605327103
        • Gilbert M.T.P.
        • Janaway R.C.
        • Tobin D.J.
        • Cooper A.
        • Wilson A.S.
        Histological correlates of post mortem mitochondrial DNA damage in degraded hair.
        Forensic Sci. Int. 2006; 156: 201-207https://doi.org/10.1016/j.forsciint.2005.02.019
        • Röck A.W.
        • Dür A.
        • Van Oven M.
        • Parson W.
        Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA).
        Forensic Sci. Int. Genet. 2013; 7: 601-609https://doi.org/10.1016/j.fsigen.2013.07.005
        • Benson D.A.
        • Cavanaugh M.
        • Clark K.
        • Karsch-Mizrachi I.
        • Lipman D.J.
        • Ostell J.
        • Sayers E.W.
        GenBank.
        Nucleic Acids Res. 2013; 41https://doi.org/10.1093/nar/gks1195
        • Lott M.T.
        • Leipzig J.N.
        • Derbeneva O.
        • Michael Xie H.
        • Chalkia D.
        • Sarmady M.
        • Procaccio V.
        • Wallace D.C.
        MtDNA variation and analysis using Mitomap and Mitomaster.
        Curr. Protoc. Bioinform. 2013; https://doi.org/10.1002/0471250953.bi0123s44
      4. MITOMAP: mtDNA control region sequence variants, (n.d.). http://www.mitomap.org/foswiki/bin/view/MITOMAP/PolymorphismsControl (accessed 13.09.16).

        • Abu-Amero K.K.
        • Larruga J.M.
        • Cabrera V.M.
        • González A.M.
        Mitochondrial DNA structure in the Arabian Peninsula.
        BMC Evol. Biol. 2008; 8: 45https://doi.org/10.1186/1471-2148-8-45
        • Summerer M.
        • Horst J.
        • Erhart G.
        • Weißensteiner H.
        • Schönherr S.
        • Pacher D.
        • Forer L.
        • Horst D.
        • Manhart A.
        • Horst B.
        • Sanguansermsri T.
        • Kloss-Brandstätter A.
        Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar.
        BMC Evol. Biol. 2014; 14: 17https://doi.org/10.1186/1471-2148-14-17