Advertisement

Soil characterisation by bacterial community analysis for forensic applications: A quantitative comparison of environmental technologies

Published:October 06, 2016DOI:https://doi.org/10.1016/j.fsigen.2016.10.005

      Highlights

      • DNA-based methods for bacterial differentiation of soil samples were compared.
      • RISA, 16S-rRNA TRFLP and 16S-rRNA MiSeq performed best.
      • TRFLP methodology was optimized for forensic usage.

      Abstract

      The ubiquity and transferability of soil makes it a resource for the forensic investigator, as it can provide a link between agents and scenes. However, the information contained in soils, such as chemical compounds, physical particles or biological entities, is seldom used in forensic investigations; due mainly to the associated costs, lack of available expertise, and the lack of soil databases. The microbial DNA in soil is relatively easy to access and analyse, having thus the potential to provide a powerful means for discriminating soil samples or linking them to a common origin. We compared the effectiveness and reliability of multiple methods and genes for bacterial characterisation in the differentiation of soil samples: ribosomal intergenic spacer analysis (RISA), terminal restriction fragment length polymorphism (TRFLP) of the rpoB gene, and five methods using the 16S rRNA gene: phylogenetic microarrays, TRFLP, and high throughput sequencing with Roche 454, Illumina MiSeq and IonTorrent PGM platforms. All these methods were also compared to long-chain hydrocarbons (n-alkanes) and fatty alcohol profiling of the same soil samples. RISA, 16S TRFLP and MiSeq performed best, reliably and significantly discriminating between adjacent, similar soil types. As TRFLP employs the same capillary electrophoresis equipment and procedures used to analyse human DNA, it is readily available for use in most forensic laboratories. TRFLP was optimized for forensic usage in five parameters: choice of primer pair, fluorescent tagging, concentrating DNA after digestion, number of PCR amplifications per sample and number of capillary electrophoresis runs per PCR amplification. This study shows that molecular microbial ecology methodologies are robust in discriminating between soil samples, illustrating their potential usage as an evaluative forensic tool.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blaud A.
        • Diouf F.
        • Herrmann A.M.
        • Lerch T.Z.
        Analysing the effect of soil organic matter on bacterial communities using T-RFLP fingerprinting: different methods, different stories?.
        Biol. Fert. Soils. 2015; 51: 959-971
        • Bodrossy L.
        • Stralis-Pavese N.
        • Murrell J.C.
        • Radajewski S.
        • Weilharter A.
        • Sessitsch A.
        Development and validation of a diagnostic microbial microarray for methanotrophs.
        Environ. Microbiol. 2003; 5: 566-582
        • Cao Y.
        • Van De Werfhorst L.C.
        • Scott E.A.
        • Raith M.R.
        • Holden P.A.
        • Griffith J.F.
        Bacteroidales terminal restriction fragment length polymorphism (TRFLP) for fecal source differentiation in comparison to and in combination with universal bacteria TRFLP.
        Water Res. 2013; 47: 6944-6955
        • Case R.J.
        • Boucher Y.
        • Dahllöf I.
        • Holmström C.
        • Doolittle W.F.
        • Kjelleberg S.
        Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies.
        Appl. Environ. Microbiol. 2007; 73: 278-288
        • D’Amore R.
        • Ijaz U.Z.
        • Schirmer M.
        • Kenny J.G.
        • Gregory R.
        • et al.
        A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling.
        BMC Genomics. 2016; 17: 55
        • Dawson L.A.
        • Hillier S.
        Measurement of soil characteristics for forensic applications.
        Surf. Interface Anal. 2010; 42: 363-377
        • Dawson L.A.
        • Mayes R.W.
        Criminal and environmental soil forensics: soil as physical evidence in forensic investigations.
        in: Murphy B.L. Morrison R.D. Introduction to Environmental Forensics. 3rd ed. Academic Press Oxford, 2014: 457-486 (Chapter 12)
        • Dove H.
        • Mayes R.W.
        Protocol for the analysis of n-alkanes and other plant-wax compounds and their use as markers for quantifying the nutrient supply of large mammalian herbivores.
        Nat. Protoc. 2006; 1: 1680-1697
        • Dowd S.E.
        • Callaway T.R.
        • Wolcott R.D.
        • Sun Y.
        • McKeehan T.
        • Hagevoort R.G.
        • et al.
        Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP).
        BMC Microbiol. 2008; 8: 125
        • Dunbar J.
        • Ticknor L.O.
        • Kuske C.R.
        Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities.
        Appl. Environ. Microbiol. 2001; 67: 190-197
        • Ecker D.J.
        New technology for rapid molecular diagnosis of bloodstream infection.
        Expert Rev. Mol. Diagn. 2010; 10: 399-415
        • Edgar R.C.
        • Haas B.J.
        • Clemente J.C.
        • Quince C.
        • Knight R.
        UCHIME improves sensitivity and speed of chimera detection.
        Bioinformatics. 2011; 27: 2194-2200
        • Fierer N.
        • Jackson R.B.
        The diversity and biogeography of soil bacterial communities.
        Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 626-631
        • Finley S.J.
        • Benbow M.E.
        • Javan G.T.
        Potential applications of soil microbial ecology and high throughput sequencing in criminal investigations.
        Appl. Soil Ecol. 2015; 88: 69-78
        • Fitzpatrick R.W.
        • Raven M.D.
        • Forrester S.T.
        A systematic approach to soil forensics: criminal case studies involving transference from crime scene to forensic evidence.
        in: Ritz K. Dawson L. Miller L. Criminal and Environmental Soil Forensic. Springer, Dordrecht2009: 105-127
        • Franzosa E.A.
        • Huang K.
        • Meadow J.F.
        • Gevers D.
        • Lemon K.P.
        • Bohannan B.J.M.
        • et al.
        Identifying personal microbiomes using metagenomic codes.
        PNAS. 2015; 112: E2930-E2938
        • Fredriksson N.J.
        • Hermansson M.
        • Wilén B.M.
        Impact of T-RFLP data analysis choices on assessments of microbial community structure and dynamics.
        BMC Bioinf. 2014; 15: 360
        • Gans J.
        • Wolinsky M.
        • Dunbar J.
        Computational improvements reveal great bacterial diversity and high metal toxicity in soil.
        Science. 2005; 309: 1387-1390
        • Giampaoli S.
        • Berti A.
        • Di Maggio R.M.
        • Pilli E.
        • Valentini Valeriani F.
        • et al.
        The environmental biological signature: NGS profiling for forensic comparison of soils.
        Forensic Sci. Int. 2014; 240: 41-47
        • Girvan M.S.
        • Bullimore J.
        • Pretty J.N.
        • Osborn M.A.
        • Ball A.S.
        Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils.
        Appl. Environ. Microbiol. 2003; 69: 1800-1809
        • Green S.J.
        • Venkatramanan R.
        • Naqib A.
        Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches.
        PLoS One. 2015; 10: e0128122
        • HMA v Angus Sinclair
        • Hopkins D.W.
        • Wiltshire P.E.J.
        • Turner B.D.
        Microbial characteristics of soils from graves: an investigation at the interface of soil microbiology and forensic science.
        Appl. Soil Ecol. 2000; 14: 283-288
        • Horswell J.
        • Cordiner S.J.
        • Maas E.W.
        • Martin T.M.
        • Sutherland K.B.W.
        • Speir T.W.
        • et al.
        Forensic comparison of soils by bacterial community DNA profiling.
        J. Forensic Sci. 2002; 47: 350-353
        • Huse S.M.
        • Welch D.M.
        • Morrison H.G.
        • Sogin M.L.
        Ironing out the wrinkles in the rare biosphere through improved OTU clustering.
        Environ. Microbiol. 2010; 12: 1889-1898
        • Jesmok E.M.
        • Hopkins J.M.
        • Foran D.R.
        Next-generation sequencing of the bacterial 16S rRNA gene for forensic soil comparison: a feasibility study.
        J. Forensic Sci. 2016; 61: 607-617
        • Kandel P.P.
        • Pasternak Z.
        • van Rijn J.
        • Nahum O.
        • Jurkevitch E.
        Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems.
        FEMS Microbiol. Ecol. 2014; 89: 149-161
        • Khodakova A.S.
        • Smith R.J.
        • Burgoyne L.
        • Abarno D.
        • Linacre A.
        Random whole metagenomic sequencing for forensic discrimination of soils.
        PLoS One. 2014; 9: e104996
        • Kozich J.J.
        • Westcott S.L.
        • Baxter N.T.
        • Highlander S.K.
        • Schloss P.D.
        Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform.
        Appl. Environ. Microbiol. 2013; 79: 5112-5120
        • Lenz E.J.
        • Foran D.R.
        Bacterial profiling of soil using genus-specific markers and multidimensional scaling.
        J. Forensic Sci. 2010; 55: 1437-1442
        • McMurdie P.J.
        • Holmes S.
        Waste not, want not: why rarefying microbiome data is inadmissible.
        PLoS Comput. Biol. 2014; 10: e1003531
        • Meyers M.S.
        • Foran D.R.
        Spatial and temporal influences on bacterial profiling of forensic soil samples.
        J. Forensic Sci. 2008; 53: 652-660
        • Mielke P.W.
        Handbook of Statistics.
        in: Krishnaiah P.S.P. Elsevier, Amsterdam1984 (813–830 p)
        • Page A.L.
        • Miller R.H.
        • Keeney D.R.
        Methods of Soil Analysis Part 2, Chemical and Microbiological Properties.
        second ed. Am. Soc. Agron, Madison, WI1982 (p. 1159)
        • Pasternak Z.
        • Al-Ashhab A.
        • Gatica J.
        • Gafny R.
        • Avraham S.
        • Minz D.
        • et al.
        Spatial and temporal biogeography of soil microbial communities in arid and semiarid regions.
        PLoS One. 2013; 8: e69705
        • Pye K.
        • Croft D.J.
        Forensic Geoscience: Introduction and Overview. 232. Geological Society London, Special Publications, 2004: 1-5
        • Quaak F.C.A.
        • Kuiper I.
        Statistical data analysis of bacterial t-RFLP profiles in forensic soil comparisons.
        Forensic Sci. Int. 2011; 210: 96-101
        • Quast C.
        • Pruesse E.
        • Yilmaz P.
        • Gerken J.
        • Schweer T.
        • Yarza P.
        • Peplies J.
        • Glöckner F.O.
        The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
        Nucl. Acids Res. 2013; 41: D590-D596
        • Ranjard L.
        • Poly F.
        • Lata J.C.
        • Mougel C.
        • Thioulouse J.
        • Nazaret S.
        Characterisation of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability.
        Appl. Environ. Microbiol. 2001; 67: 4479-4487
        • Roesch L.F.W.
        • Fulthorpe R.R.
        • Riva A.
        • Casella G.
        • Hadwin A.K.M.
        • Kent A.D.
        • et al.
        Pyrosequencing enumerates and contrasts soil microbial diversity.
        ISME J. 2007; 1: 283-290
        • Sagova-Mareckova M.
        • Cermak L.
        • Novotna J.
        • Plhackova K.
        • Forstova J.
        • Kopecky J.
        Innovative methods for soil DNA purification tested in soils with widely differing characteristics.
        Appl. Environ. Microbiol. 2008; 74: 2902-2907
        • Sanguin H.
        • Remenant B.
        • Dechesne A.
        • Thioulouse J.
        • Vogel T.M.
        • Nesme X.
        • et al.
        Potential of a 16S rRNA-based taxonomic microarray for analyzing the rhizosphere effects of maize on agrobacterium spp. and bacterial communities.
        Appl. Environ. Microbiol. 2006; 72: 4302-4312
        • Schloss P.D.
        • Gevers D.
        • Westcott S.L.
        Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies.
        PLoS One. 2011; 6: e27310
        • Schloss P.D.
        • Westcott S.L.
        • Ryabin T.
        • Hall J.R.
        • Hartmann M.
        • Hollister E.B.
        • et al.
        Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.
        Appl. Environ. Microbiol. 2009; 75: 7537-7541
        • Schutte U.M.E.
        • Abdo Z.
        • Bent S.J.
        • Shyu C.
        • Williams C.J.
        • et al.
        Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities.
        Appl. Microbiol. Biotechnol. 2008; 80: 365-380
        • Singer A.
        The Soils of Israel.
        Springer Science & Business Media, 2007 (306 pages)
        • Singh B.K.
        • Munro S.
        • Potts J.M.
        • Millard P.
        Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils.
        Appl. Soil Ecol. 2007; 36: 147-155
        • Smalla K.
        • Oros-Sichler M.
        • Milling A.
        • Heuer H.
        • Baumgarte S.
        • Becker R.
        • et al.
        Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results?.
        J. Microbiol. Methods. 2007; 69: 470-479
        • van Dorst J.
        • Bissett A.
        • Palmer A.S.
        • Brown M.
        • Snape I.
        • Stark J.S.
        • et al.
        FEMS Microbiol. Ecol. 2014; 89: 316-330
        • Venter J.C.
        • Remington K.
        • Heidelberg J.F.
        • Halpern A.L.
        • Rusch D.
        • Eisen J.A.
        • et al.
        Environmental genome shotgun sequencing of the Sargasso sea.
        Science. 2004; 304: 66-74
        • Woods B.
        • Lennard C.
        • Kirkbride K.P.
        • Robertson J.
        Soil examination for a forensic trace evidence laboratory –− Part 3: a proposed protocol for the effective triage and management of soil examinations.
        Forensic Sci. Int. 2016; 262: 46-55
        • Young J.M.
        • Weyrich L.S.
        • Breen J.
        • Macdonald L.M.
        • Cooper A.
        Predicting the origin of soil evidence: high throughput eukaryote sequencing and MIR spectroscopy applied to a crime scene scenario.
        Forensic Sci. Int. 2015; 251: 22-31
        • Young J.M.
        • Weyrich L.S.
        • Cooper A.
        Forensic soil DNA analysis using high-throughput sequencing: a comparison of four molecular markers.
        Forensic Sci. Int. Genet. 2014; 13: 176-184
        • Young J.M.
        • Weyrich L.S.
        • Cooper A.
        High-throughput sequencing of trace quantities of soil provides reproducible and discriminative fungal DNA profiles.
        J. Forensic Sci. 2016;