Advertisement
Correspondence| Volume 26, e19-e22, January 2017

Population genetic study over 32,000 equines from Uruguay using seventeen forensically informative STR loci

  • André Zoratto Gastaldo
    Correspondence
    Corresponding author. Current address: Fundação Estadual de Produção e Pesquisa em Saúde, Centro de Desenvolviment°Científico e Tecnológico, Laboratório de Investigação de Paternidade, Av. Ipiranga, 5400, Jardim Botânico, 90610−000, Porto Alegre, Rio Grande do Sul, Brazil.
    Affiliations
    Pontifícia Universidade Católica (PUCRS), Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil

    Laboratório de Investigação de Paternidade, Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Rodrigo Rodenbusch
    Affiliations
    Laboratório de Investigação de Paternidade, Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Porto Alegre, RS, Brazil
    Search for articles by this author
  • Rosina Fossati
    Affiliations
    Laboratorio Genia, Genética Molecular, Montevideo, Uruguay
    Search for articles by this author
  • Carlos Javier Azambuja
    Affiliations
    Laboratorio Genia, Genética Molecular, Montevideo, Uruguay
    Search for articles by this author
  • Clarice Sampaio Alho
    Affiliations
    Pontifícia Universidade Católica (PUCRS), Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
    Search for articles by this author
Published:October 24, 2016DOI:https://doi.org/10.1016/j.fsigen.2016.10.011
      It is known that horses (Equus caballus) had an important role in many activities that influenced the development of various civilizations around the world. For many reasons, men set the selection of animals according to ability, skills and disposition desired, giving rise of specific groups of horses which have distinctive characteristics transmitted to offspring consistently, the breeds. It is estimated that there are currently about 300 breeds of horses [
      • van de Goor L.H.P.
      • van Haeringen W.A.
      • Lenstra J.A.
      Population studies of 17 equine STR for forensic and phylogenetic analysis.
      ]. Due to this ancient and close interaction between horses and humans, relevant forensically cases such as theft horses, identity fraud and, more recently, the sale of adulterated or counterfeited semen doses, and doping control are the most observed crimes. Therefore, it is recommended that forensic analysis techniques become more efficient as possible with increasingly improved accuracy.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • van de Goor L.H.P.
        • van Haeringen W.A.
        • Lenstra J.A.
        Population studies of 17 equine STR for forensic and phylogenetic analysis.
        Anim. Genet. 2011; 42: 627-633
      1. OIE – World Organisation for Animal Health, http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Animalpopulation (accessed 08.02.16.).

      2. Asociación Rural del Uruguay, http://www.aru.com.uy/institucional/informacion-institucional/ (accessed 08.02.16.).

      3. StudBook Uruguayo, http://www.studbook.com.uy/ (accessed 08.02.16.).

        • Kalinowski S.T.
        • Taper M.L.
        • Marshall T.C.
        Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment.
        Mol. Ecol. 2007; 16: 1099-1106
        • Weir B.S.
        Multiplr tests.
        Genetic Data Analysis II. Sinauer Associates, USA1996: 134
        • Tereba A.
        Tools for analysis of population statistics.
        Profiles DNA. 1999; : 14-16
        • Excoffier L.
        • Laval G.
        • Schneider S.
        Arlequin (version 3.0): an integrated software package for population genetics data analysis.
        Evol. Bioinform. 2005; 1 (Online): 47-50
        • Rousset F.
        Genepop’007: a complete re-implementation of the genepop software for Windows and Linux.
        Mol. Ecol. Resour. 2008; 8: 103-106
        • Felsenstein J.
        PHYLIP (Phylogeny Inference Package) Version 3.6.
        Departament of Genome Sciences, University of Washington, Seattle2005 (Distribuited by the author)
        • Page R.D.
        TreeView: an application to display phylogenetic trees on personal computers.
        Comput. Appl. Biosci. 1996; 12: 357-358
      4. History of the Appaloosa, http://appaloosamuseum.org/history-of-the-appaloosa/ (accessed 07.25.16.).

      5. A Special Breed The Appaloosa, http://www.amappaloosa.com/history/story (accessed 07.25.16.)

      6. Arabian Horse History, www.arabhorse.com/arabian-horse-history (accessed 07.25.16.)

      7. The Arabian – Throughout history this unique breed has kept its legend alive, http://www.scottsdaleshow.com/club-info/breed-information (accessed 07.25.16.).

      8. History of the Criollo breed, https://www.criollo-horse.com/en/history-of-the-criollo-breed.html (accessed 07.25.16.).

        • Kelly L.
        • Postiglioni A.
        • de Andrés D.F.
        • Vega-Plá J.L.
        • Gagliardi R.
        • Biagetti R.
        • Franco J.
        Genetic characterisation of the Uruguayan Creole horse and analysis of relationships among horse breeds.
        Res. Vet. Sci. 2002; 72: 69-73
      9. Thoroughbred, https://en.wikipedia.org/wiki/Thoroughbred (accessed 07.25.16.).

        • Bower M.A.
        • McGivney B.A.
        • Campana M.G.
        • Gu J.
        • Andersson L.S.
        • Barrett E.
        • Davis C.R.
        • Mikko S.
        • Stock F.
        • Voronkova V.
        • Bradley D.G.
        • Fahey A.G.
        • Lindgren G.
        • MacHugh D.E.
        • Sulimova G.
        • Hill E.W.
        The genetic origin and history of speed in the thoroughbred racehorse.
        Nat. Commun. 2012; 3: 643
      10. Quarter Horses, http://www.tshaonline.org/handbook/online/articles/tcq01 (accessed 07.25.16.).

        • Petersen J.L.
        • Mickelson J.R.
        • Cleary K.D.
        • McCue M.E.
        The american quarter horse: population structure and relationship to the thoroughbred.
        J. Hered. 2014; 105: 148-162
        • Costa M.A.P.
        • Bressel R.M.C.
        • Almeida D.B.
        • Oliveira P.A.
        • Bassini L.N.
        • Moreira C.G.A.
        • Manzke V.H.B.
        • Siewerdt F.
        • Moreira H.L.M.
        Genotyping in the Brazilian Criollo horse stud book: resources and perspectives.
        Genet. Mol. Res. 2010; 9: 1645-1653
        • Paredes M.
        • Norambuena M.C.
        • Molina B.
        Diversidad genética de 12 LOCI microsatelitales utilizados en pruebas de paternidad equina en Chile.
        Arch. Zootec. 2009; 58: 111-116
        • Bowling A.T.
        • Eggleston-Stott M.L.
        • Byrns G.
        • Clark R.S.
        • Dileanis S.
        • Wictum E.
        Validation of microsatellite markers for routine horse parentage testing.
        Anim. Genet. 1997; 28: 247-252
        • Chakraborty R.
        Sample size requirements for addressing the population genetic issues of forensic use of DNA typing.
        Hum. Biol. 1992; 64: 141-159
        • Butler J.M.
        Forensic DNA Typing: Biology Technology and Genetics of STR Markers.
        2nd edition. Academic Press, 2005
        • Carracedo A.
        • Butler J.M.
        • Gusmão L.
        • Linacre A.
        • Parson W.
        • Roewer L.
        • Schneider P.M.
        Update of the guidelines for the publication of genetic population data.
        Forensic Sci. Int. Genet. 2014; 10: A1-A2
        • Linacre A.
        • Gusmão L.
        • Hecht W.
        • Hellmann A.P.
        • Mayr W.R.
        • Parson W.
        • Prinz M.
        • Schneider P.M.
        • Morling N.
        ISFG: Recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations.
        Forensic Sci. Int. Genet. 2011; 5: 501-505
        • van de Goor L.H.P.
        • Panneman H.
        • van Haeringen W.A.
        A proposal for standardization in forensic equine DNA typing: allele nomenclature for 17 equine-specific STR loci.
        Anim. Genet. 2010; 41: 122-127
        • Olaisen B.
        • Bär W.
        • Brinkmann B.
        • Budowle B.
        • Carracedo A.
        • Gill P.
        • Lincoln P.
        • Mayr W.R.
        • Rand S.
        DNA recommendations 1997 of the international society for forensic genetics.
        Vox Sang. 1998; 74: 61-63