Advertisement
Research paper| Volume 33, P1-9, March 2018

Download started.

Ok

DNA methylation markers in combination with skeletal and dental ages to improve age estimation in children

  • Lei Shi
    Affiliations
    XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

    MOE-Shanghai Key Laboratory of Children’s Environmental Health, Shanghai, China

    Department of Pediatric Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Search for articles by this author
  • Fan Jiang
    Affiliations
    Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China

    MOE-Shanghai Key Laboratory of Children’s Environmental Health, Shanghai, China
    Search for articles by this author
  • Fengxiu Ouyang
    Affiliations
    XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

    MOE-Shanghai Key Laboratory of Children’s Environmental Health, Shanghai, China
    Search for articles by this author
  • Jun Zhang
    Affiliations
    XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

    MOE-Shanghai Key Laboratory of Children’s Environmental Health, Shanghai, China
    Search for articles by this author
  • Zhimin Wang
    Affiliations
    Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Academy of Science & Technology, Shanghai, China
    Search for articles by this author
  • Xiaoming Shen
    Correspondence
    Corresponding author at: MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China.
    Affiliations
    XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

    Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China

    MOE-Shanghai Key Laboratory of Children’s Environmental Health, Shanghai, China
    Search for articles by this author
Published:November 16, 2017DOI:https://doi.org/10.1016/j.fsigen.2017.11.005

      Highlights

      • The age-associated epi-markers were identified and validated in Chinese children for the first time.
      • Four CpG sites for boys and five CpG sites for girls were identified to be significantly associated with chronologic age.
      • DNA methylation markers in combination with skeletal age and dental age greatly improved the accuracy of age estimation in Chinese children.

      Abstract

      Age estimation is critical in forensic science, in competitive sports and games and in other age-related fields, but the current methods are suboptimal. The combination of age-associated DNA methylation markers with skeletal age (SA) and dental age (DA) may improve the accuracy and precision of age estimation, but no study has examined this topic. In the current study, we measured SA (GP, TW3-RUS, and TW3-Carpal methods) and DA (Demirjian and Willems methods) by X-ray examination in 124 Chinese children (78 boys and 46 girls) aged 6–15 years. To identify age-associated CpG sites, we analyzed methylome-wide DNA methylation profiling by using the Illumina HumanMethylation450 BeadChip system in 48 randomly selected children. Five CpG sites were identified as associated with chronologic age (CA), with an absolute value of Pearson’s correlation coefficient (r) > 0.5 (p< 0.01) and a false discovery rate < 0.01. The validation of age-associated CpG sites was performed using droplet digital PCR techniques in all 124 children. After validation, four CpG sites for boys and five CpG sites for girls were further adopted to build the age estimation model with SA and DA using multivariate linear stepwise regressions. These CpG sites were located at 4 known genes: DDO, PRPH2, DHX8, and ITGA2B and at one unknown gene with the Illumina ID number of 22398226. The accuracy of age estimation methods was compared according to the mean absolute error (MAE) and root mean square error (RMSE). The best single measure for SA was the TW3-RUS method (MAE = 0.69 years, RMSE = 0.95 years) in boys, and the GP method (MAE = 0.74 years, RMSE = 0.94 years) in girls. For DA, the Willems method was the best single measure for both boys (MAE = 0.63 years, RMSE = 0.78 years) and girls (MAE = 0.54 years, RMSE = 0.68 years). The models that incorporated SA and DA with the methylation levels of age-associated CpG sites provided the highest accuracy of age estimation in both boys (MAE = 0.47 years, R2 = 0.886) and girls (MAE = 0.33 years, R2 = 0.941). Cross validation of the results confirmed the reliability and validity of the models. In conclusion, age-associated DNA methylation markers in combination with SA and DA greatly improve the accuracy of age estimation in Chinese children. This method may be applied in forensic science, in competitive sports and games and in other age-related fields.

      Abbreviations:

      SA (skeletal age), DA (dental age), MAE (mean absolute error), RMSE (root mean standard error), CA (chronological age), GP (Greulich and Pyle), TW3 (Tanner and Whitehouse version 3), ddPCR (digital droplet PCR), FDR (false discovery rate), EA (estimated age)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Willems G.
        • Van Olmen A.
        • Spiessens B.
        • Carels C.
        Dental age estimation in Belgian children: Demirjian’s technique revisited.
        J. Forensic Sci. 2001; 46: 893-895
        • Schmeling A.
        • Geserick G.
        • Reisinger W.
        • Olze A.
        Age estimation.
        Forensic Sci. Int. 2007; 165: 178-181https://doi.org/10.1016/j.forsciint.2006.05.016
        • Schmeling A.
        • Olze A.
        • Reisinger W.
        • Geserick G.
        Age estimation of living people undergoing criminal proceedings.
        Lancet. 2001; 358: 89-90https://doi.org/10.1016/S0140-6736(01)05379-X
        • Santoro V.
        • De Donno A.
        • Marrone M.
        • Pietro Campobasso C.
        • Introna F.
        Forensic age estimation of living individuals: a retrospective analysis.
        Forensic Sci. Int. 2009; 193: 1-4https://doi.org/10.1016/j.forsciint.2009.09.014
        • De Donno A.
        • Roca R.
        • Introna F.
        • Santoro V.
        A case of an adoptive girl with precocious puberty: the problem of age estimation.
        Forensic Sci. Int. 2013; 231 (e1-400. e4): 400https://doi.org/10.1016/j.forsciint.2013.05.033
        • Malina R.M.
        Skeletal age and age verification in youth sport.
        Sports Med. 2011; 41: 925-947
        • Urzel V.
        • Bruzek J.
        Dental age assessment in children: a comparison of four methods in a recent french population.
        J. Forensic Sci. 2013; 58: 1341-1347https://doi.org/10.1111/1556-4029.12221
        • Schmidt S.
        • Nitz I.
        • Schulz R.
        • Schmeling A.
        Applicability of the skeletal age determination method of Tanner and Whitehouse for forensic age diagnostics.
        Int. J. Legal Med. 2008; 122: 309-314https://doi.org/10.1007/s00414-008-0237-3
        • Cameriere R.
        • De Luca M.
        • Ferrante L.
        Measurements of developing teeth, and carpals and epiphyses of the ulna and radius for assessing new cut-offs at the age thresholds of 10, 11, 12, 13 and 14 years.
        J. Forensic Legal Med. 2015; 34: 50-54https://doi.org/10.1016/j.jflm.2015.05.006
        • Bassed R.B.
        • Briggs C.
        • Drummer O.H.
        Age estimation using CT imaging of the third molar tooth, the medial clavicular epiphysis, and the spheno-occipital synchondrosis: a multifactorial approach.
        Forensic Sci. Int. 2011; 212 (e1-273. e5): 273https://doi.org/10.1016/j.forsciint.2011.06.007
        • Suma G.
        • Rao B.
        • Annigeri R.
        • Dayashankara Rao J.
        • Goel S.
        Radiographic correlation of dental and skeletal age: third molar, an age indicator.
        J. Forensic Dent. Sci. 2011; 3: 14-18https://doi.org/10.4103/0975-1475.85286
        • Song Z.
        • Von Figura G.
        • Liu Y.
        • Kraus J.M.
        • Torrice C.
        • Dillon P.
        • Rudolph-Watabe M.
        • Ju Z.
        • Kestler H.A.
        • Sanoff H.
        • Lenhard Rudolph K.
        Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood.
        Aging Cell. 2010; 9: 607-615https://doi.org/10.1111/j.1474-9726.2010.00583.x
        • Srettabunjong S.
        • Satitsri S.
        • Thongnoppakhun W.
        • Tirawanchai N.
        The study on telomere length for age estimation in a Thai population.
        Am. J. Forensic Med. Pathol. 2014; 35: 148-153https://doi.org/10.1097/paf.0000000000000095
        • Slijepcevic P.
        DNA damage response, telomere maintenance and ageing in light of the integrative model.
        Mech. Ageing Dev. 2008; 129: 11-16https://doi.org/10.1016/j.mad.2007.10.012
        • Helfman P.M.
        • Bada J.L.
        Aspartic acid racemisation in dentine as a measure of ageing.
        Nature. 1976; 262: 279https://doi.org/10.1038/262279b0
        • Rajkumari S.
        • Nirmal M.
        • Sunil P.M.
        • Smith A.A.
        Estimation of age using aspartic acid racemisation in human dentin in Indian population.
        Forensic Sci. Int. 2013; 228: 38https://doi.org/10.1016/j.forsciint.2013.02.021
        • Cortopassi G.A.
        • Shibata D.
        • Arnheim N.
        A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues.
        Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 7370-7374https://doi.org/10.1073/pnas.89.16.7370
        • Craig L.B.
        • Zavy M.T.
        • Budrys N.M.
        • Hansen K.R.
        Skin advanced glycation end products as a marker of reproductive age in women—a pilot study.
        Fertil. Steril. 2013; 100 (S115–S115)https://doi.org/10.1016/j.fertnstert.2013.07.1662
        • Zubakov D.
        • Liu F.
        • Kokmeijer I.
        • Choi Y.
        • van Meurs J.B.J.
        • van IJcken W.F.J.
        • Uitterlinden A.G.
        • Hofman A.
        • Broer L.
        • van Duijn C.M.
        • Lewin J.
        • Kayser M.
        Human age estimation from blood using mRNA, DNA, methylation DNA rearrangement, and telomere length.
        Forensic Sci. Int. Genet. 2016; 24: 33-43https://doi.org/10.1016/j.fsigen.2016.05.014
        • Fraga M.F.
        • Esteller M.
        Epigenetics and aging: the targets and the marks.
        Trends Genet. 2007; 23: 413-418https://doi.org/10.1016/j.tig.2007.05.008
        • Saeed M.
        • Berlin R.M.
        • Cruz T.D.
        Exploring the utility of genetic markers for predicting biological age.
        Legal Med. 2012; 14: 279-285https://doi.org/10.1016/j.legalmed.2012.05.003
        • Teschendorff A.E.
        • Menon U.
        • Gentry-Maharaj A.
        • Ramus S.J.
        • Weisenberger D.J.
        • Shen H.
        • Campan M.
        • Noushmehr H.
        • Bell C.G.
        • Maxwell A.P.
        • Savage D.A.
        • Mueller-Holzner E.
        • Marth C.
        • Kocjan G.
        • Gayther S.A.
        • Jones A.
        • Beck S.
        • Wagner W.
        • Laird P.W.
        • Jacobs I.J.
        • Widschwendter M.
        Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer.
        Genome Res. 2010; 20: 440-446https://doi.org/10.1101/gr.103606.109
        • Rakyan V.K.
        • Down T.A.
        • Maslau S.
        • Andrew T.
        • Yang T.P.
        • Beyan H.
        • Whittaker P.
        • McCann O.T.
        • Finer S.
        • Valdes A.M.
        • Leslie R.D.
        • Deloukas P.
        • Spector T.D.
        Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains.
        Genome Res. 2010; 20: 434-439https://doi.org/10.1101/gr.103101.109
        • Hannum G.
        • Guinney J.
        • Zhao L.
        • Zhang L.
        • Hughes G.
        • Sadda S.
        • Klotzle B.
        • Bibikova M.
        • Fan J.B.
        • Gao Y.
        • Deconde R.
        • Chen M.
        • Rajapakse I.
        • Friend S.
        • Ideker T.
        • Zhang K.
        Genome-wide methylation profiles reveal quantitative views of human aging rates.
        Mol. Cell. 2013; 49: 359-367https://doi.org/10.1016/j.molcel.2012.10.016
        • Bell J.T.
        • Tsai P.C.
        • Yang T.P.
        • Pidsley R.
        • Nisbet J.
        • Glass D.
        • Mangino M.
        • Zhai G.
        • Zhang F.
        • Valdes A.
        • Shin S.Y.
        • Dempster E.L.
        • Murray R.M.
        • Grundberg E.
        • Hedman A.K.
        • Nica A.
        • Small K.S.
        • Dermitzakis E.T.
        • McCarthy M.I.
        • Mill J.
        • Spector T.D.
        • Deloukas P.
        Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population.
        PLoS Genet. 2012; 8https://doi.org/10.1371/journal.pgen.1002629
        • Heyn H.
        • Li N.
        • Ferreira H.H.J.
        • Moran S.
        • Pisano D.G.
        • Gomez A.
        • Diez J.
        Distinct DNA methylomes of newborns and centenarians.
        Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 10522-10527
        • Horvath S.
        DNA methylation age of human tissues and cell types.
        Genome Biol. 2013; 14: R115https://doi.org/10.1186/gb-2013-14-10-r115
        • Bibikova M.
        • Barnes B.
        • Tsan C.
        • Ho V.
        • Klotzle B.
        • Le J.M.
        • Delano D.
        • Zhang L.
        • Schroth G.P.
        • Gunderson K.L.
        • Fan J.-B.
        • Shen R.
        High density DNA methylation array with single CpG site resolution.
        Genomics. 2011; 98: 288-295https://doi.org/10.1016/j.ygeno.2011.07.007
        • Bocklandt S.
        • Lin W.
        • Sehl M.E.
        • Sánchez F.J.
        • Sinsheimer J.S.
        • Horvath S.
        • Vilain E.
        Epigenetic predictor of age.
        PLoS One. 2011; 6https://doi.org/10.1371/journal.pone.0014821
        • Weidner C.I.
        • Lin Q.
        • Koch C.M.
        • Eisele L.
        • Beier F.
        • Ziegler P.
        • Bauerschlag D.O.
        • Jöckel K.-H.
        • Erbel R.
        • Mühleisen T.W.
        • Zenke M.
        • Brümmendorf T.H.
        • Wagner W.
        Aging of blood can be tracked by DNA methylation changes at just three CpG sites.
        Genome Biol. 2014; 15: R24https://doi.org/10.1186/gb-2014-15-2-r24
        • Yi S.H.
        • Xu L.C.
        • Mei K.
        • Yang R.Z.
        • Huang D.X.
        Isolation and identification of age-related DNA methylation markers for forensic age-prediction.
        Forensic Sci. Int. Genet. 2014; 11: 117-125https://doi.org/10.1016/j.fsigen.2014.03.006
        • Xu C.
        • Qu H.
        • Wang G.
        • Xie B.
        • Shi Y.
        • Yang Y.
        • Zhao Z.
        • Hu L.
        • Fang X.
        • Yan J.
        • Feng L.
        A novel strategy for forensic age prediction by DNA methylation and support vector regression model.
        Sci. Rep. 2015; 5: 17788https://doi.org/10.1038/srep17788
        • Greulich W.W.
        Radiographic Atlas of Skeletal Development of the Hand and Wrist.
        Stanford University Press, Stanford, Calif1959
        • Tanner J.M.
        • Healy M.J.R.
        • Goldstein H.
        • Cameron N.
        Assessment of skeletal maturity and prediction of adult height (TW3 method).
        London. W.B. Saunders, 2001
        • Demirjian A.
        • Goldstein H.
        • Tanner J.M.
        A new system of dental age assessment.
        Hum. Biol. 1973; 45: 211-227https://doi.org/10.2307/41459864
        • Evans J.D.
        Straightforward Statistics for the Behavioral Sciences.
        Brooks/Cole Pub. Co., Pacific Grove, Calif1996
        • Alisch R.S.
        • Barwick B.G.
        • Chopra P.
        • Myrick L.K.
        • Satten G.A.
        • Conneely K.N.
        • Warren S.T.
        Age-associated DNA methylation in pediatric populations.
        Genome Res. 2012; 22: 623-632https://doi.org/10.1101/gr.125187.111
        • Haiter-Neto F.
        • Kurita L.M.
        • Menezes A.V.
        • Casanova M.S.
        Skeletal age assessment: a comparison of 3 methods.
        Am. J. Orthod. Dentofac. Orthop. 2006; 130: 15-20https://doi.org/10.1016/j.ajodo.2006.03.023
        • Lin F.-Q.
        • Zhang J.
        • Zhu Z.
        • Wu Y.-M.
        Comparative study of Gilsanz-Ratib digital atlas and Greulich-Pyle atlas for bone age estimation in a Chinese sample.
        Ann. Hum. Biol. 2015; 42: 523-527https://doi.org/10.3109/03014460.2014.977346
        • Büken B.
        • Erzengin Ö.U.
        • Büken E.
        • Şafak A.A.
        • Yazıcı B.
        • Erkol Z.
        Comparison of the three age estimation methods: which is more reliable for Turkish children?.
        Forensic Sci. Int. 2009; 183 (e1-103. e7): 103https://doi.org/10.1016/j.forsciint.2008.10.012
        • Mani S.A.
        • Naing L.
        • John J.
        • Samsudin A.R.
        Comparison of two methods of dental age estimation in 7-15-year-old Malays.
        Int. J. Paediatr. Dent. 2008; 18: 380-388https://doi.org/10.1111/j.1365-263X.2007.00890.x
        • Nik-Hussein N.N.
        • Kee K.M.
        • Gan P.
        Validity of Demirjian and Willems methods for dental age estimation for Malaysian children aged 5-15 years old.
        Forensic Sci. Int. 2011; 204 (e1-208. e6): 208https://doi.org/10.1016/j.forsciint.2010.08.020
        • Grover S.
        • Marya C.M.
        • Avinash J.
        • Pruthi N.
        Estimation of dental age and its comparison with chronological age: accuracy of two radiographic methods.
        Med. Sci. Law. 2012; 52: 32-35https://doi.org/10.1258/msl.2011.011021
        • El-Bakary A.A.
        • Hammad S.M.
        • Mohammed F.
        Dental age estimation in egyptian children, comparison between two methods.
        J. Forensic Legal Med. 2010; 17: 363-367https://doi.org/10.1016/j.jflm.2010.05.008
        • Cameriere R.
        • Ferrante L.
        • Cingolani M.
        Age estimation in children by measurement of open apices in teeth.
        Int. J. Legal Med. 2006; 120: 49-52https://doi.org/10.1007/s00414-005-0047-9
        • cheng Guo Y.
        • xia Yan C.
        • wei Lin X.
        • Zhou H.
        • ping Li J.
        • Pan F.
        • yong Zhang Z.
        • Wei L.
        • Tang Z.
        • Chen T.
        Age estimation in northern Chinese children by measurement of open apices in tooth roots.
        Int. J. Legal Med. 2014; 129: 179-186https://doi.org/10.1007/s00414-014-1035-8
        • Kutner M.H.
        Applied Linear Regression Models.
        fourth ed. McGraw-Hill/Irwin, Boston2004
        • Cameriere R.
        • De Luca S.
        • Biagi R.
        • Cingolani M.
        • Farronato G.
        • Ferrante L.
        Accuracy of three age estimation methods in children by measurements of developing teeth and carpals and epiphyses of the ulna and radius.
        J. Forensic Sci. 2012; 57: 1263-1270https://doi.org/10.1111/j.1556-4029.2012.02120.x
        • Santoro V.
        • Roca R.
        • De Donno A.
        • Fiandaca C.
        • Pinto G.
        • Tafuri S.
        • Introna F.
        Applicability of Greulich and Pyle and Demirijan aging methods to a sample of Italian population.
        Forensic Sci. Int. 2012; 221 (e1-153. e5): 153https://doi.org/10.1016/j.forsciint.2012.04.014
        • Garamendi P.M.
        • Landa M.I.
        • Ballesteros J.
        • Solano M.A.
        Reliability of the methods applied to assess age minority in living subjects around 18 years old: a survey on a Moroccan origin population.
        Forensic Sci. Int. 2005; 154: 3-12https://doi.org/10.1016/j.forsciint.2004.08.018
        • Cameriere R.
        • Ferrante L.
        Age estimation in children by measurement of carpals and epiphyses of radius and ulna and open apices in teeth: a pilot study.
        Forensic Sci. Int. 2008; 174: 60-63https://doi.org/10.1016/j.forsciint.2007.03.013
        • Thevissen P.W.
        • Kaur J.
        • Willems G.
        Human age estimation combining third molar and skeletal Development.
        Int. J. Legal Med. 2012; 126: 285-292https://doi.org/10.1007/s00414-011-0639-5
        • Pinchi V.
        • De Luca F.
        • Focardi M.
        • Pradella F.
        • Vitale G.
        • Ricciardi F.
        • Norelli G.A.
        Combining dental and skeletal evidence in age classification: pilot study in a sample of Italian sub-adults.
        Legal Med. 2016; 20: 75-79https://doi.org/10.1016/j.legalmed.2016.04.009
        • Garagnani P.
        • Bacalini M.G.
        • Pirazzini C.
        • Gori D.
        • Giuliani C.
        • Mari D.
        • Di Blasio A.M.
        • Gentilini D.
        • Vitale G.
        • Collino S.
        • Rezzi S.
        • Castellani G.
        • Capri M.
        • Salvioli S.
        • Franceschi C.
        Methylation of ELOVL2 gene as a new epigenetic marker of age.
        Aging Cell. 2012; 11: 1132-1134https://doi.org/10.1111/acel.12005
        • Martino D.
        • Loke Y.J.
        • Gordon L.
        • Ollikainen M.
        • Cruickshank M.N.
        • Saffery R.
        • Craig J.M.
        Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance.
        Genome Biol. 2013; 14: R42https://doi.org/10.1186/gb-2013-14-5-r42
        • Almén M.S.
        • Nilsson E.K.
        • Jacobsson J.A.
        • Kalnina I.
        • Klovins J.
        • Fredriksson R.
        • Schiöth H.B.
        Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity.
        Gene. 2014; 548: 61-67https://doi.org/10.1016/j.gene.2014.07.009
        • Steegenga W.T.
        • Boekschoten M.V.
        • Lute C.
        • Hooiveld G.J.
        • De Groot P.J.
        • Morris T.J.
        • Teschendorff A.E.
        • Butcher L.M.
        • Beck S.
        • Müller M.
        Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs.
        Age (Omaha). 2014; 36: 1523-1540https://doi.org/10.1007/s11357-014-9648-x
        • Marinova Z.
        • Maercker A.
        • Küffer A.
        • Robinson M.D.
        • Wojdacz T.K.
        • Walitza S.
        • Grünblatt E.
        • Burri A.
        DNA methylation profiles of elderly individuals subjected to indentured childhood labor and trauma.
        BMC Med. Genet. 2017; 18https://doi.org/10.1186/s12881-017-0370-2
        • Hong S.R.
        • Jung S.-E.
        • Lee E.H.
        • Shin K.-J.
        • Yang W.I.
        • Lee H.Y.
        DNA methylation-based age prediction from saliva: high age predictability by combination of 7 CpG markers.
        Forensic Sci. Int. Genet. 2017; 29: 118-125https://doi.org/10.1016/j.fsigen.2017.04.006
        • Freire-Aradas A.
        • Phillips C.
        • Mosquera-Miguel A.
        • Girn-Santamara L.
        • Gmez-Tato A.
        • Casares De Cal M.
        • lvarez-Dios J.
        • Ansede-Bermejo J.
        • Torres-Espaol M.
        • Schneider P.M.
        • Popiech E.
        • Branicki W.
        • Carracedo
        • Lareu M.V.
        Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system.
        Forensic Sci. Int. Genet. 2016; 24: 65-74https://doi.org/10.1016/j.fsigen.2016.06.005
        • Zbie-Piekarska R.
        • Splnicka M.
        • Kupiec T.
        • Makowska Z.
        • Spas A.
        • Parys-Proszek A.
        • Kucharczyk K.
        • Poski R.
        • Branicki W.
        Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science.
        Forensic Sci. Int. Genet. 2014; 14: 161-167https://doi.org/10.1016/j.fsigen.2014.10.002
        • Hindson C.M.
        • Chevillet J.R.
        • Briggs H.A.
        • Gallichotte E.N.
        • Ruf I.K.
        • Hindson B.J.
        • Vessella R.L.
        • Tewari M.
        Absolute quantification by droplet digital PCR versus analog real-time PCR.
        Nat. Methods. 2013; 10: 1003https://doi.org/10.1038/nmeth.2633
        • Katane M.
        • Kawata T.
        • Nakayama K.
        • Saitoh Y.
        • Kaneko Y.
        • Matsuda S.
        • Saitoh Y.
        • Miyamoto T.
        • Sekine M.
        • Homma H.
        Characterization of the enzymatic and structural properties of human D-aspartate oxidase and comparison with those of the rat and mouse enzymes.
        Biol. Pharm. Bull. 2015; 38: 298-305https://doi.org/10.1248/bpb.b14-00690
        • Shankar S.P.
        • Hughbanks-Wheaton D.K.
        • Birch D.G.
        • Sullivan L.S.
        • Conneely K.N.
        • Bowne S.J.
        • Stone E.M.
        • Daiger S.P.
        Autosomal dominant retinal dystrophies caused by a founder splice site mutation, c.828+3A>T, in PRPH2 and protein haplotypes in trans as modifiers.
        Invest. Ophthalmol. Vis. Sci. 2016; 57: 349https://doi.org/10.1167/iovs.15-16965
        • English M.A.
        • Lei L.
        • Blake T.
        • Wincovitch S.M.
        • Sood R.
        • Azuma M.
        • Hickstein D.
        • Liu P.P.
        Incomplete splicing, cell division defects, and hematopoietic blockage in dhx8 mutant zebrafish.
        Dev. Dyn. 2012; 241: 879-889https://doi.org/10.1002/dvdy.23774
        • Dumon S.
        • Walton D.S.
        • Volpe G.
        • Wilson N.
        • Dassé E.
        • Del Pozzo W.
        • Landry J.-R.
        • Turner B.
        • O’Neill L.P.
        • Göttgens B.
        • Frampton J.
        Itga2b regulation at the onset of definitive hematopoiesis and commitment to differentiation (Itga2b regulation).
        PLoS One. 2012; 7: e43300https://doi.org/10.1371/journal.pone.0043300
        • Gavala S.
        • Donta C.
        • Tsiklakis K.
        • Boziari A.
        • Kamenopoulou V.
        • Stamatakis H.C.
        Radiation dose reduction in direct digital panoramic radiography.
        Eur. J. Radiol. 2009; 71: 42-48https://doi.org/10.1016/j.ejrad.2008.03.018
        • Bocker M.T.
        • Hellwig I.
        • Breiling A.
        • Eckstein V.
        • Ho A.D.
        • Lyko F.
        Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging.
        Blood. 2011; 117: e182https://doi.org/10.1182/blood-2011-01-331926