Advertisement
Research paper| Volume 33, P38-47, March 2018

Genetic determinants of freckle occurrence in the Spanish population: Towards ephelides prediction from human DNA samples

Published:November 23, 2017DOI:https://doi.org/10.1016/j.fsigen.2017.11.013

      Highlights

      • Prediction of human appearance from DNA is a useful tool to identify unknown persons.
      • Genetic variants in MC1R, IRF4, ASIP and BNC2 contribute to freckling in Spain.
      • A preliminary DNA-based prediction model for the presence of ephelides is developed.
      • Accuracy of the newly-generated freckle prediction model is reasonably high.
      • Further research is needed before practical use in forensics of the newly-generated freckle model.

      Abstract

      Prediction of human pigmentation traits, one of the most differentiable externally visible characteristics among individuals, from biological samples represents a useful tool in the field of forensic DNA phenotyping. In spite of freckling being a relatively common pigmentation characteristic in Europeans, little is known about the genetic basis of this largely genetically determined phenotype in southern European populations. In this work, we explored the predictive capacity of eight freckle and sunlight sensitivity-related genes in 458 individuals (266 non-freckled controls and 192 freckled cases) from Spain. Four loci were associated with freckling (MC1R, IRF4, ASIP and BNC2), and female sex was also found to be a predictive factor for having a freckling phenotype in our population. After identifying the most informative genetic variants responsible for human ephelides occurrence in our sample set, we developed a DNA-based freckle prediction model using a multivariate regression approach. Once developed, the capabilities of the prediction model were tested by a repeated 10-fold cross-validation approach. The proportion of correctly predicted individuals using the DNA-based freckle prediction model was 74.13%. The implementation of sex into the DNA-based freckle prediction model slightly improved the overall prediction accuracy by 2.19% (76.32%). Further evaluation of the newly-generated prediction model was performed by assessing the model’s performance in a new cohort of 212 Spanish individuals, reaching a classification success rate of 74.61%. Validation of this prediction model may be carried out in larger populations, including samples from different European populations. Further research to validate and improve this newly-generated freckle prediction model will be needed before its forensic application. Together with DNA tests already validated for eye and hair colour prediction, this freckle prediction model may lead to a substantially more detailed physical description of unknown individuals from DNA found at the crime scene.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kayser M.
        Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes.
        Forensic Sci. Int. Genet. 2015; 18: 33-48https://doi.org/10.1016/j.fsigen.2015.02.003
        • Maroñas O.
        • Söchtig J.
        • Ruiz Y.
        • Phillips C.
        • Carracedo Á.
        • Lareu M.V.
        The genetics of skin, hair, and eye color variation and its relevance to forensic pigmentation predictive tests.
        Forensic Sci. Rev. 2015; 27: 13-40
        • Ruiz Y.
        • Phillips C.
        • Gomez-Tato A.
        • Alvarez-Dios J.
        • Casares de Cal M.
        • Cruz R.
        • Maroñas O.
        • Söchtig J.
        • Fondevila M.
        • Rodriguez-Cid M.J.
        • Carracedo A.
        • Lareu M.V.
        Further development of forensic eye color predictive tests.
        Forensic Sci. Int. Genet. 2013; 7: 28-40https://doi.org/10.1016/j.fsigen.2012.05.009
        • Walsh S.
        • Liu F.
        • Ballantyne K.N.
        • van Oven M.
        • Lao O.
        • Kayser M.
        IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information.
        Forensic Sci. Int. Genet. 2011; 5: 170-180https://doi.org/10.1016/j.fsigen.2010.02.004
        • Liu F.
        • van Duijn K.
        • Vingerling J.R.
        • Hofman A.
        • Uitterlinden A.G.
        • Janssens A.C.J.W.
        • Kayser M.
        Eye color and the prediction of complex phenotypes from genotypes.
        Curr. Biol. 2009; 19: R192-193https://doi.org/10.1016/j.cub.2009.01.027
        • Walsh S.
        • Liu F.
        • Wollstein A.
        • Kovatsi L.
        • Ralf A.
        • Kosiniak-Kamysz A.
        • Branicki W.
        • Kayser M.
        The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA.
        Forensic Sci. Int. Genet. 2013; 7: 98-115https://doi.org/10.1016/j.fsigen.2012.07.005
        • Pneuman A.
        • Budimlija Z.M.
        • Caragine T.
        • Prinz M.
        • Wurmbach E.
        Verification of eye and skin color predictors in various populations.
        Leg. Med. Tokyo Jpn. 2012; 14: 78-83https://doi.org/10.1016/j.legalmed.2011.12.005
        • Praetorius C.
        • Sturm R.A.
        • Steingrimsson E.
        Sun-induced freckling: ephelides and solar lentigines.
        Pigment Cell Melanoma Res. 2014; 27: 339-350https://doi.org/10.1111/pcmr.12232
        • Bataille V.
        • Snieder H.
        • MacGregor A.J.
        • Sasieni P.
        • Spector T.D.
        Genetics of risk factors for melanoma: an adult twin study of nevi and freckles.
        J. Natl. Cancer Inst. 2000; 92: 457-463
        • Rees J.L.
        The genetics of sun sensitivity in humans.
        Am. J. Hum. Genet. 2004; 75: 739-751https://doi.org/10.1086/425285
        • Bastiaens M.
        • ter Huurne J.
        • Gruis N.
        • Bergman W.
        • Westendorp R.
        • Vermeer B.J.
        • Bouwes Bavinck J.N.
        The melanocortin-1-receptor gene is the major freckle gene.
        Hum. Mol. Genet. 2001; 10: 1701-1708
        • Valverde P.
        • Healy E.
        • Jackson I.
        • Rees J.L.
        • Thody A.J.
        Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans.
        Nat. Genet. 1995; 11: 328-330https://doi.org/10.1038/ng1195-328
        • García-Borrón J.C.
        • Sánchez-Laorden B.L.
        • Jiménez-Cervantes C.
        Melanocortin-1 receptor structure and functional regulation.
        Pigment Cell Res. 2005; 18: 393-410https://doi.org/10.1111/j.1600-0749.2005.00278.x
        • Schaffer J.V.
        • Bolognia J.L.
        The melanocortin-1 receptor: red hair and beyond.
        Arch. Dermatol. 2001; 137: 1477-1485
        • Sturm R.A.
        • Teasdale R.D.
        • Box N.F.
        Human pigmentation genes: identification, structure and consequences of polymorphic variation.
        Gene. 2001; 277: 49-62
        • Eriksson N.
        • Macpherson J.M.
        • Tung J.Y.
        • Hon L.S.
        • Naughton B.
        • Saxonov S.
        • Avey L.
        • Wojcicki A.
        • Pe’er I.
        • Mountain J.
        Web-based, participant-driven studies yield novel genetic associations for common traits.
        PLoS Genet. 2010; 6: e1000993https://doi.org/10.1371/journal.pgen.1000993
        • Sulem P.
        • Gudbjartsson D.F.
        • Stacey S.N.
        • Helgason A.
        • Rafnar T.
        • Jakobsdottir M.
        • Steinberg S.
        • Gudjonsson S.A.
        • Palsson A.
        • Thorleifsson G.
        • Pálsson S.
        • Sigurgeirsson B.
        • Thorisdottir K.
        • Ragnarsson R.
        • Benediktsdottir K.R.
        • et al.
        Two newly identified genetic determinants of pigmentation in Europeans.
        Nat. Genet. 2008; 40: 835-837https://doi.org/10.1038/ng.160
        • Sulem P.
        • Gudbjartsson D.F.
        • Stacey S.N.
        • Helgason A.
        • Rafnar T.
        • Magnusson K.P.
        • Manolescu A.
        • Karason A.
        • Palsson A.
        • Thorleifsson G.
        • Jakobsdottir M.
        • Steinberg S.
        • Pálsson S.
        • Jonasson F.
        • Sigurgeirsson B.
        • et al.
        Genetic determinants of hair, eye and skin pigmentation in Europeans.
        Nat. Genet. 2007; 39: 1443-1452https://doi.org/10.1038/ng.2007.13
        • Jacobs L.C.
        • Hamer M.A.
        • Gunn D.A.
        • Deelen J.
        • Lall J.S.
        • van Heemst D.
        • Uh H.-W.
        • Hofman A.
        • Uitterlinden A.G.
        • Griffiths C.E.M.
        • Beekman M.
        • Slagboom P.E.
        • Kayser M.
        • Liu F.
        • Nijsten T.
        A genome-wide association study identifies the skin color genes IRF4, MC1R, ASIP, and BNC2 influencing facial pigmented spots.
        J. Invest. Dermatol. 2015; 135: 1735-1742https://doi.org/10.1038/jid.2015.62
        • Jacobs L.C.
        • Wollstein A.
        • Lao O.
        • Hofman A.
        • Klaver C.C.
        • Uitterlinden A.G.
        • Nijsten T.
        • Kayser M.
        • Liu F.
        Comprehensive candidate gene study highlights UGT1A and BNC2 as new genes determining continuous skin color variation in Europeans.
        Hum. Genet. 2013; 132: 147-158https://doi.org/10.1007/s00439-012-1232-9
        • Martínez-Cadenas C.
        • López S.
        • Ribas G.
        • Flores C.
        • García O.
        • Sevilla A.
        • Smith-Zubiaga I.
        • Ibarrola-Villaba M.
        • del M.
        • Pino-Yanes M.
        • Gardeazabal J.
        • Boyano D.
        • García de Galdeano A.
        • Izagirre N.
        • de la Rúa C.
        • Alonso S.
        Simultaneous purifying selection on the ancestral MC1R allele and positive selection on the melanoma-risk allele V60L in south Europeans.
        Mol. Biol. Evol. 2013; 30: 2654-2665https://doi.org/10.1093/molbev/mst158
        • Beaumont K.A.
        • Newton R.A.
        • Smit D.J.
        • Leonard J.H.
        • Stow J.L.
        • Sturm R.A.
        Altered cell surface expression of human MC1R variant receptor alleles associated with red hair and skin cancer risk.
        Hum. Mol. Genet. 2005; 14: 2145-2154https://doi.org/10.1093/hmg/ddi219
        • Beaumont K.A.
        • Shekar S.N.
        • Shekar S.L.
        • Newton R.A.
        • James M.R.
        • Stow J.L.
        • Duffy D.L.
        • Sturm R.A.
        Receptor function, dominant negative activity and phenotype correlations for MC1R variant alleles.
        Hum. Mol. Genet. 2007; 16: 2249-2260https://doi.org/10.1093/hmg/ddm177
        • Guan X.
        • Niu J.
        • Liu Z.
        • Wang L.-E.
        • Amos C.I.
        • Lee J.E.
        • Gershenwald J.E.
        • Grimm E.A.
        • Wei Q.
        Variants in melanocortin 1 receptor gene contribute to risk of melanoma—a direct sequencing analysis in a Texas population.
        Pigment Cell Melanoma Res. 2013; 26: 422-425https://doi.org/10.1111/pcmr.12070
        • Ibarrola-Villava M.
        • Peña-Chilet M.
        • Llorca-Cardeñosa M.J.
        • Oltra S.
        • Cadenas C.-M.
        • Bravo J.
        • Ribas G.
        Modeling MC1R rare variants: a structural evaluation of variants detected in a Mediterranean case-control study.
        J. Invest. Dermatol. 2014; 134: 1146-1149https://doi.org/10.1038/jid.2013.469
        • Kanetsky P.A.
        • Rebbeck T.R.
        • Hummer A.J.
        • Panossian S.
        • Armstrong B.K.
        • Kricker A.
        • Marrett L.D.
        • Millikan R.C.
        • Gruber S.B.
        • Culver H.A.
        • Zanetti R.
        • Gallagher R.P.
        • Dwyer T.
        • Busam K.
        • From L.
        • et al.
        Population-based study of natural variation in the melanocortin-1 receptor gene and melanoma.
        Cancer Res. 2006; 66: 9330-9337https://doi.org/10.1158/0008-5472.CAN-06-1634
        • Ozola A.
        • Azarjana K.
        • Doniņa S.
        • Proboka G.
        • Mandrika I.
        • Petrovska R.
        • Cēma I.
        • Heisele O.
        • Eņģele L.
        • Streinerte B.
        • Pjanova D.
        Melanoma risk associated with MC1R gene variants in Latvia and the functional analysis of rare variants.
        Cancer Genet. 2013; 206: 81-91https://doi.org/10.1016/j.cancergen.2013.01.002
        • Pérez Oliva A.B.
        • Fernéndez L.P.
        • Detorre C.
        • Herráiz C.
        • Martínez-Escribano J.A.
        • Benítez J.
        • Lozano Teruel J.A.
        • García-Borrón J.C.
        • Jiménez-Cervantes C.
        • Ribas G.
        Identification and functional analysis of novel variants of the human melanocortin 1 receptor found in melanoma patients.
        Hum. Mutat. 2009; 30: 811-822https://doi.org/10.1002/humu.20971
        • Fernandez L.
        • Milne R.
        • Bravo J.
        • Lopez J.
        • Avilés J.
        • Longo M.
        • Benítez J.
        • Lázaro P.
        • Ribas G.
        MC1R: three novel variants identified in a malignant melanoma association study in the Spanish population.
        Carcinogenesis. 2007; 28: 1659-1664https://doi.org/10.1093/carcin/bgm084
        • Herraiz C.
        • Journé F.
        • Ghanem G.
        • Jiménez-Cervantes C.
        • García-Borrón J.C.
        Functional status and relationships of melanocortin 1 receptor signaling to the cAMP and extracellular signal-regulated protein kinases 1 and 2 pathways in human melanoma cells.
        Int. J. Biochem. Cell Biol. 2012; 44: 2244-2252https://doi.org/10.1016/j.biocel.2012.09.008
        • Nakayama K.
        • Soemantri A.
        • Jin F.
        • Dashnyam B.
        • Ohtsuka R.
        • Duanchang P.
        • Isa M.N.
        • Settheetham-Ishida W.
        • Harihara S.
        • Ishida T.
        Identification of novel functional variants of the melanocortin 1 receptor gene originated from Asians.
        Hum. Genet. 2006; 119: 322-330https://doi.org/10.1007/s00439-006-0141-1
        • Fargnoli M.C.
        • Altobelli E.
        • Keller G.
        • Chimenti S.
        • Höfler H.
        • Peris K.
        Contribution of melanocortin-1 receptor gene variants to sporadic cutaneous melanoma risk in a population in central Italy: a case-control study.
        Melanoma Res. 2006; 16: 175-182https://doi.org/10.1097/01.cmr.0000198454.11580.b5
        • Jiménez-Cervantes C.
        • Germer S.
        • González P.
        • Sánchez J.
        • Sánchez C.O.
        • García-Borrón J.C.
        Thr40 and Met122 are new partial loss-of-function natural mutations of the human melanocortin 1 receptor.
        FEBS Lett. 2001; 508: 44-48
        • Moore J.H.
        • Gilbert J.C.
        • Tsai C.-T.
        • Chiang F.-T.
        • Holden T.
        • Barney N.
        • White B.C.
        A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility.
        J. Theor. Biol. 2006; 241: 252-261https://doi.org/10.1016/j.jtbi.2005.11.036
        • Martinez-Cadenas C.
        • Peña-Chilet M.
        • Ibarrola-Villava M.
        • Ribas G.
        Gender is a major factor explaining discrepancies in eye colour prediction based on HERC2/OCA2 genotype and the IrisPlex model.
        Forensic Sci. Int. Genet. 2013; 7: 453-460https://doi.org/10.1016/j.fsigen.2013.03.007
        • Ibarrola-Villava M.
        • Hu H.-H.
        • Guedj M.
        • Fernandez L.P.
        • Descamps V.
        • Basset-Seguin N.
        • Bagot M.
        • Benssussan A.
        • Saiag P.
        • Fargnoli M.C.
        • Peris K.
        • Aviles J.A.
        • Lluch A.
        • Ribas G.
        • Soufir N.
        MC1R, SLC45A2 and TYR genetic variants involved in melanoma susceptibility in southern European populations: results from a meta-analysis.
        Eur. J. Cancer. 2012; 48: 2183-2191
        • Duffy D.L.
        • Zhao Z.Z.
        • Sturm R.A.
        • Hayward N.K.
        • Martin N.G.
        • Montgomery G.W.
        Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma.
        J. Invest. Dermatol. 2010; 130: 520-528https://doi.org/10.1038/jid.2009.258
        • Steyerberg E.W.
        • Harrell F.E.
        • Borsboom G.J.
        • Eijkemans M.J.
        • Vergouwe Y.
        • Habbema J.D.
        Internal validation of predictive models: efficiency of some procedures for logistic regression analysis.
        J. Clin. Epidemiol. 2001; 54: 774-781
        • Steyerberg E.W.
        • Vergouwe Y.
        Towards better clinical prediction models: seven steps for development and an ABCD for validation.
        Eur. Heart J. 2014; 35: 1925-1931https://doi.org/10.1093/eurheartj/ehu207
        • Praetorius C.
        • Grill C.
        • Stacey S.N.
        • Metcalf A.M.
        • Gorkin D.U.
        • Robinson K.C.
        • Van Otterloo E.
        • Kim R.S.Q.
        • Bergsteinsdottir K.
        • Ogmundsdottir M.H.
        • Magnusdottir E.
        • Mishra P.J.
        • Davis S.R.
        • Guo T.
        • Zaidi M.R.
        • et al.
        A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway.
        Cell. 2013; 155https://doi.org/10.1016/j.cell.2013.10.022
        • Fracasso N.C.A.
        • de Andrade E.S.
        • Wiezel C.E.V.
        • Andrade C.C.F.
        • Zanão L.R.
        • da Silva M.S.
        • Marano L.A.
        • Donadi E.A.
        • Castelli E.C.
        • Simões A.L.
        • Mendes-Junior C.T.
        Haplotypes from the SLC45A2 gene are associated with the presence of freckles and eye, hair and skin pigmentation in Brazil.
        Leg. Med. 2017; 25: 43-51https://doi.org/10.1016/j.legalmed.2016.12.013
        • Liu F.
        • Wen B.
        • Kayser M.
        Colorful DNA polymorphisms in humans.
        Semin. Cell Dev. Biol. 2013; 24: 562-575https://doi.org/10.1016/j.semcdb.2013.03.013
        • Walsh S.
        • Lindenbergh A.
        • Zuniga S.B.
        • Sijen T.
        • de Knijff P.
        • Kayser M.
        • Ballantyne K.N.
        Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence.
        Forensic Sci. Int. Genet. 2011; 5: 464-471https://doi.org/10.1016/j.fsigen.2010.09.008
        • Walsh S.
        • Chaitanya L.
        • Clarisse L.
        • Wirken L.
        • Draus-Barini J.
        • Kovatsi L.
        • Maeda H.
        • Ishikawa T.
        • Sijen T.
        • de Knijff P.
        • Branicki W.
        • Liu F.
        • Kayser M.
        Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage.
        Forensic Sci. Int. Genet. 2014; 9: 150-161https://doi.org/10.1016/j.fsigen.2013.12.006
        • Heilmann S.
        • Kiefer A.K.
        • Fricker N.
        • Drichel D.
        • Hillmer A.M.
        • Herold C.
        • Tung J.Y.
        • Eriksson N.
        • Redler S.
        • Betz R.C.
        • Li R.
        • Kárason A.
        • Nyholt D.R.
        • Song K.
        • Vermeulen S.H.
        • et al.
        Androgenetic alopecia: identification of four genetic risk loci and evidence for the contribution of WNT signaling to its etiology.
        J. Invest. Dermatol. 2013; 133: 1489-1496https://doi.org/10.1038/jid.2013.43
        • Adhikari K.
        • Fontanil T.
        • Cal S.
        • Mendoza-Revilla J.
        • Fuentes-Guajardo M.
        • Chacón-Duque J.-C.
        • Al-Saadi F.
        • Johansson J.A.
        • Quinto-Sanchez M.
        • Acuña-Alonzo V.
        • Jaramillo C.
        • Arias W.
        • Barquera Lozano R.
        • Macín Pérez G.
        • Gómez-Valdés J.
        • et al.
        A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features.
        Nat. Commun. 2016; 7: 10815https://doi.org/10.1038/ncomms10815
        • Liu F.
        • Hendriks A.E.J.
        • Ralf A.
        • Boot A.M.
        • Benyi E.
        • Sävendahl L.
        • Oostra B.A.
        • van Duijn C.
        • Hofman A.
        • Rivadeneira F.
        • Uitterlinden A.G.
        • Drop S.L.S.
        • Kayser M.
        Common DNA variants predict tall stature in Europeans.
        Hum. Genet. 2014; 133: 587-597https://doi.org/10.1007/s00439-013-1394-0
        • Claes P.
        • Liberton D.K.
        • Daniels K.
        • Rosana K.M.
        • Quillen E.E.
        • Pearson L.N.
        • McEvoy B.
        • Bauchet M.
        • Zaidi A.A.
        • Yao W.
        • Tang H.
        • Barsh G.S.
        • Absher D.M.
        • Puts D.A.
        • Rocha J.
        • et al.
        Modeling 3D facial shape from DNA.
        PLoS Genet. 2014; 10: e1004224https://doi.org/10.1371/journal.pgen.1004224
        • Hernando B.
        • Ibarrola-Villava M.
        • Peña-Chilet M.
        • Alonso S.
        • Ribas G.
        • Martinez-Cadenas C.
        Sex and MC1R variants in human pigmentation: differences in tanning ability and sensitivity to sunlight between sexes.
        J. Dermatol. Sci. 2016; 84: 346-348https://doi.org/10.1016/j.jdermsci.2016.09.004
        • Pośpiech E.
        • Karłowska-Pik J.
        • Ziemkiewicz B.
        • Kukla M.
        • Skowron M.
        • Wojas-Pelc A.
        • Branicki W.
        Further evidence for population specific differences in the effect of DNA markers and gender on eye colour prediction in forensics.
        Int. J. Legal Med. 2016; 130: 923-934https://doi.org/10.1007/s00414-016-1388-2
        • Candille S.I.
        • Absher D.M.
        • Beleza S.
        • Bauchet M.
        • McEvoy B.
        • Garrison N.A.
        • Li J.Z.
        • Myers R.M.
        • Barsh G.S.
        • Tang H.
        • Shriver M.D.
        Genome-wide association studies of quantitatively measured skin, hair, and eye pigmentation in four European populations.
        PLoS One. 2012; 7: e48294https://doi.org/10.1371/journal.pone.0048294
        • Hernando B.
        • Ibarrola-Villava M.
        • Fernandez L.P.
        • Peña-Chilet M.
        • Llorca-Cardeñosa M.
        • Oltra S.S.
        • Alonso S.
        • Boyano M.D.
        • Martinez-Cadenas C.
        • Ribas G.
        Sex-specific genetic effects associated with pigmentation, sensitivity to sunlight, and melanoma in a population of Spanish origin.
        Biol. Sex Differ. 2016; 7: 17https://doi.org/10.1186/s13293-016-0070-1
        • Pietroni C.
        • Andersen J.D.
        • Johansen P.
        • Andersen M.M.
        • Harder S.
        • Paulsen R.
        • Børsting C.
        • Morling N.
        The effect of gender on eye colour variation in European populations and an evaluation of the IrisPlex prediction model.
        Forensic Sci. Int. Genet. 2014; 11: 1-6https://doi.org/10.1016/j.fsigen.2014.02.002
        • Martinez-Cadenas C.
        • Peña-Chilet M.
        • Llorca-Cardeñosa M.J.
        • Cervera R.
        • Ibarrola-Villava M.
        • Ribas G.
        Gender and eye colour prediction discrepancies: a reply to criticisms.
        Forensic Sci. Int. Genet. 2014; 9: e7-9https://doi.org/10.1016/j.fsigen.2013.10.002
        • Wood A.R.
        • Esko T.
        • Yang J.
        • Vedantam S.
        • Pers T.H.
        • Gustafsson S.
        • Chu A.Y.
        • Estrada K.
        • ’an Luan J.
        • Kutalik Z.
        • Amin N.
        • Buchkovich M.L.
        • Croteau-Chonka D.C.
        • Day F.R.
        • Duan Y.
        • et al.
        Defining the role of common variation in the genomic and biological architecture of adult human height.
        Nat. Genet. 2014; 46: 1173-1186https://doi.org/10.1038/ng.3097
        • Steyerberg E.W.
        • Bleeker S.E.
        • Moll H.A.
        • Grobbee D.E.
        • Moons K.G.M.
        Internal and external validation of predictive models: a simulation study of bias and precision in small samples.
        J. Clin. Epidemiol. 2003; 56: 441-447
        • Garcia-Borron J.C.
        • Abdel-Malek Z.
        • Jiménez-Cervantes C.
        MC1R, the cAMP pathway, and the response to solar UV: extending the horizon beyond pigmentation.
        Pigment Cell Melanoma Res. 2014; 27: 699-720