Highlights
- •Bayesian networks (BNs) are used to evaluate a pair of activity level propositions.
- •Probabilities on the persistence of non-self DNA on hands over time are obtained.
- •Delays in deposition decreased the detectability of the transferred contribution.
- •Empirical estimations of the likelihood of direct or indirect deposition are obtained.
- •Impacts of changes to various parameter values on the LR are observed.
Abstract
Questions relating to how DNA from an individual got to where it was recovered from
and the activities associated with its pickup, retention and deposition are increasingly
relevant to criminal investigations and judicial considerations. To address activity
level propositions, investigators are typically required to assess the likelihood
that DNA was transferred indirectly and not deposited through direct contact with
an item or surface. By constructing a series of Bayesian networks, we demonstrate
their use in assessing activity level propositions derived from a recent legal case
involving the alleged secondary transfer of DNA to a surface following a handshaking
event.
In the absence of data required to perform the assessment, a set of handshaking simulations
were performed to obtain probabilities on the persistence of non-self DNA on the hands
following a 40 min, 5 h or 8 h delay between the handshake and contact with the final surface (an axe handle).
Variables such as time elapsed, and the activities performed and objects contacted
between the handshake and contact with the axe handle, were also considered when assessing
the DNA results.
DNA from a known contributor was transferred to the right hand of an opposing hand-shaker
(as a depositor), and could be subsequently transferred to, and detected on, a surface
contacted by the depositor 40 min to 5 h post-handshake. No non-self DNA from the known contributor was detected in deposits
made 8 h post-handshake. DNA from the depositor was generally detected as the major or only
contributor in the profiles generated. Contributions from the known contributor were
minor, decreasing in presence and in the strength of support for inclusion as the
time between the handshake and transfer event increased.
The construction of a series of Bayesian networks based on the case circumstances
provided empirical estimations of the likelihood of direct or indirect deposition.
The analyses and conclusions presented demonstrate both the complexity of activity
level assessments concerning DNA evidence, and the power of Bayesian networks to visualise
and explore the issues of interest for a given case.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Forensic Science International: GeneticsAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- HCA 13.2007
- EWCA Crim 1085.2010
- Analysis and implications of the miscarriages of justice of Amanda Knox and Raffaele Sollecito.Forensic Sci. Int. Genet. 2016; 23: 9-18
- A hierarchy of propositions: deciding which level to address in casework.Sci. Justice. 1998; 38: 231-239
- Interpreting small quantities of DNA: the hierarchy of propositions and the use of Bayesian networks.J. Forensic Sci. 2002; 47: 520-530
- Uncertain Judgements: Eliciting Experts' Probabilities.John Wiley & Sons, Ltd., Chichester, West Sussex2006
- Probability of detection of DNA deposited by habitual wearer and/or the second individual who touched the garment.Forensic Sci. Int. Genet. 2016; 20: 53-60
- The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario.Forensic Sci. Int. Genet. 2017; 29: 48-60
- Investigation of secondary DNA transfer of skin cells under controlled test conditions.Leg. Med. 2010; 12: 117-120
- Shedder status − an analysis of self and non-self DNA in multiple handprints deposited by the same individuals over time.Forensic Sci. Int. Genet. 2016; 23: 190-196
- Following the transfer of DNA: how does the presence of background DNA affect the transfer and detection of a target source of DNA?.Forensic Sci. Int. Genet. 2015; 19: 68-75
- evidence dynamics: an investigation into the deposition and persistence of directly- and indirectly-transferred DNA on regularly-used knives.Forensic Sci. Int. Genet. 2017; 29: 38-47
- Shedding light on the relative DNA contribution of two persons handling the same object.Forensic Sci. Int. Genet. 2016; 24: 148-157
- Persistence of touch DNA on burglary-related tools.Int. J. Legal Med. 2017; 131: 941-953
- Stabbing simulations and DNA transfer.Forensic Sci. Int. Genet. 2016; 22: 73-80
- An inter-laboratory comparison study on transfer, persistence and recovery of DNA from cable ties.Forensic Sci. Int. Genet. 2017; 31: 95-104
- Transfer and persistence of DNA on the hands and the influence of activities performed.Forensic Sci. Int. Genet. 2017; 28: 10-20
- Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios.Forensic Sci. Int. Genet. 2016; 21: 81-89
- Persistence of DNA deposited by the original user on objects after subsequent use by a second person.Forensic Sci. Int. Genet. 2014; 8: 219-225
- The influence of substrate on DNA transfer and extraction efficiency.Forensic Sci. Int. Genet. 2013; 7: 167-175
- DNA transfer: review and implications for casework.Forensic Sci. Int. Genet. 2013; 7: 434-443
- Evaluation of forensic DNA traces when propositions of interest relate to activities: analysis and discussion of recurrent concerns.Front. Genet. 2016; 7
- DNA transfer: informed judgment or mere guesswork?.Front. Genet. 2013; 4
- A probabilistic approach to body fluid typing interpretation: an exploratory study on forensic saliva testing.Law Prob. Risk. 2015; 14: 323-339
- Cell type determination and association with the DNA donor.Forensic Sci. Int. Genet. 2016; 25: 97-111
- Evaluating forensic biology results given source level propositions.Forensic Sci. Int. Genet. 2016; 21: 54-67
- The Evaluation of Exclusionary DNA Results: a Discussion of Issues in R v. Drummond.Law Prob. Risk. 2016; 15: 175-197
- Helping to distinguish primary from secondary transfer events for trace DNA.Forensic Sci. Int. Genet. 2017; 28: 155-177
- The interpretation of traces found on adhesive tapes.Law Prob. Risk. 2015; 14: 305-322
- Using sensitivity analyses in Bayesian networks to highlight the impact of data paucity and direct future analyses: a contribution to the debate on measuring and reporting the precision of likelihood ratios.Sci. Justice. 2016; 56: 402-410
- SASCFC 82.2013
- HCA 28.2014
- More on the hierarchy of propositions: exploring the distinction between explanations and propositions.Sci. Justice. 2000; 40: 3-10
- A practical guide for the formulation of propositions in the Bayesian approach to DNA evidence interpretation in an adversarial environment.J. Forensic Sci. 2016; 61: 186-195
- The importance of distinguishing information from evidence/observations when formulating propositions.Sci. Justice. 2015; 55: 520-525
- Activity level DNA evidence evaluation: on propositions addressing the actor or the activity.Forensic Sci. Int. 2017; 278: 115-124
- Modelling crime linkage with Bayesian networks.Sci. Justice. 2015; 55: 209-217
- ENFSI Guideline for Evaluative Reporting in Forensic Science.European Network of Forensic Science Institutes, 2015
- The effect of pressure on DNA deposition by touch.Forensic Sci. Int. Genet. Suppl. Ser. 2017; (in press)
- The tendency of individuals to transfer DNA to handled items.Forensic Sci. Int. 2007; 168: 162-168
- Sex-specific age association with primary DNA transfer.Int. J. Legal Med. 2016; 131: 103-112
- Activities between activities of focus − relevant when assessing DNA transfer probabilities.Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5: e75-e77
- The transfer of touch DNA from hands to glass, fabric and wood.Forensic Sci. Int. Genet. 2012; 6: 41-46
- An investigation of DNA recovery from firearms and cartridge cases.Can. Soc. Forensic Sci. J. 2006; 39: 217-228
- Comments on Cale CM, Earll ME Latham KE, Bush GL. Could secondary DNA transfer falsely place someone at the scene of a crime? J. Forensic Sci. 2016;6(1):196–203.J. Forensic Sci. 2016; 61: 1396-1398
- Could secondary DNA transfer falsely place someone at the scene of a crime?.J. Forensic Sci. 2016; 61: 196-203
- The complexities of DNA transfer during a social setting.Leg. Med. 2015; 17: 82-91
- Validating multiplexes for use in conjunction with modern interpretation strategies.Forensic Sci. Int. Genet. 2016; 20: 6-19
Article info
Publication history
Published online: November 28, 2017
Accepted:
November 26,
2017
Received in revised form:
October 21,
2017
Received:
August 18,
2017
Identification
Copyright
© 2017 Elsevier B.V. All rights reserved.