Advertisement

Microhaplotypes in forensic genetics

Published:October 01, 2018DOI:https://doi.org/10.1016/j.fsigen.2018.09.009

      Highlights

      • Historical background of microhaplotypes (microhaps, MHs).
      • Features of MH markers, methods and technologies used for their analysis.
      • Current applications of MHs for human identification, mixture deconvolution, and ancestry inference.
      • Perspectives of microhaps for missing person identification, relationship testing, medical/and non-human DNA analysis.

      Abstract

      Microhaplotype loci (microhaps, MHs) are a novel type of molecular marker of less than 300 nucleotides, defined by two or more closely linked SNPs associated in multiple allelic combinations. The value of these markers is enhanced by massively parallel sequencing (MPS), which allows the sequencing of both parental haplotypes at each of the many multiplexed loci. This review describes the features of these multi-SNP markers and documents their value in forensic genetics, focusing on individualization, biogeographic ancestry inference, and mixture deconvolution. Foreseeable applications also include missing person identification, relationship testing, and medical diagnostic applications. The technique is not restricted to humans.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ceppelini R.
        • Curtoni E.
        • Mattiuz P.
        • Miggiano V.
        • Scudeller G.
        • Serra A.
        Curtoni E.S. Mattiuz P.L. Tosi R.M. Genetics of leukocyte antigens: A family study of segregation and linkage, Histocompat. Test. Munksgaard, Copenhagen1967: 149-187
        • Collins F.S.
        The human genome project: lessons from large-scale biology.
        Science (80-.). 2003; 300: 286-290https://doi.org/10.1126/science.1084564
        • Blattner F.R.
        • Plunkett G.
        • Bloch C.A.
        • Perna N.T.
        • Burland V.
        • Riley M.
        • Collado-Vides J.
        • Glasner J.D.
        • Rode C.K.
        • Mayhew G.F.
        • Gregor J.
        • Davis N.W.
        • Kirkpatrick H.A.
        • Goeden M.A.
        • Rose D.J.
        • Mau B.
        • Shao Y.
        The complete genome sequence of Escherichia coli K-12.
        Science. 1997; 277 (Accessed 17 April 2018): 1453-1462
      1. C. elegans sequencing consortium, genome sequence of the nematode C. elegans: a platform for investigating biology.
        Science. 1998; 282 (Accessed 17 April 2018): 2012-2018
        • Adams M.D.
        • Celniker S.E.
        • Holt R.A.
        • Evans C.A.
        • Gocayne J.D.
        • Amanatides P.G.
        • Scherer S.E.
        • Li P.W.
        • Hoskins R.A.
        • Galle R.F.
        • George R.A.
        • Lewis S.E.
        • Richards S.
        • Ashburner M.
        • Henderson S.N.
        • Sutton G.G.
        • Wortman J.R.
        • Yandell M.D.
        • Zhang Q.
        • Chen L.X.
        • Brandon R.C.
        • Rogers Y.H.
        • Blazej R.G.
        • Champe M.
        • Pfeiffer B.D.
        • Wan K.H.
        • Doyle C.
        • Baxter E.G.
        • Helt G.
        • Nelson C.R.
        • Gabor G.L.
        • Abril J.F.
        • Agbayani A.
        • An H.J.
        • Andrews-Pfannkoch C.
        • Baldwin D.
        • Ballew R.M.
        • Basu A.
        • Baxendale J.
        • Bayraktaroglu L.
        • Beasley E.M.
        • Beeson K.Y.
        • Benos P.V.
        • Berman B.P.
        • Bhandari D.
        • Bolshakov S.
        • Borkova D.
        • Botchan M.R.
        • Bouck J.
        • Brokstein P.
        • Brottier P.
        • Burtis K.C.
        • Busam D.A.
        • Butler H.
        • Cadieu E.
        • Center A.
        • Chandra I.
        • Cherry J.M.
        • Cawley S.
        • Dahlke C.
        • Davenport L.B.
        • Davies P.
        • de Pablos B.
        • Delcher A.
        • Deng Z.
        • Mays A.D.
        • Dew I.
        • Dietz S.M.
        • Dodson K.
        • Doup L.E.
        • Downes M.
        • Dugan-Rocha S.
        • Dunkov B.C.
        • Dunn P.
        • Durbin K.J.
        • Evangelista C.C.
        • Ferraz C.
        • Ferriera S.
        • Fleischmann W.
        • Fosler C.
        • Gabrielian A.E.
        • Garg N.S.
        • Gelbart W.M.
        • Glasser K.
        • Glodek A.
        • Gong F.
        • Gorrell J.H.
        • Gu Z.
        • Guan P.
        • Harris M.
        • Harris N.L.
        • Harvey D.
        • Heiman T.J.
        • Hernandez J.R.
        • Houck J.
        • Hostin D.
        • Houston K.A.
        • Howland T.J.
        • Wei M.H.
        • Ibegwam C.
        • Jalali M.
        • Kalush F.
        • Karpen G.H.
        • Ke Z.
        • Kennison J.A.
        • Ketchum K.A.
        • Kimmel B.E.
        • Kodira C.D.
        • Kraft C.
        • Kravitz S.
        • Kulp D.
        • Lai Z.
        • Lasko P.
        • Lei Y.
        • Levitsky A.A.
        • Li J.
        • Li Z.
        • Liang Y.
        • Lin X.
        • Liu X.
        • Mattei B.
        • McIntosh T.C.
        • McLeod M.P.
        • McPherson D.
        • Merkulov G.
        • Milshina N.V.
        • Mobarry C.
        • Morris J.
        • Moshrefi A.
        • Mount S.M.
        • Moy M.
        • Murphy B.
        • Murphy L.
        • Muzny D.M.
        • Nelson D.L.
        • Nelson D.R.
        • Nelson K.A.
        • Nixon K.
        • Nusskern D.R.
        • Pacleb J.M.
        • Palazzolo M.
        • Pittman G.S.
        • Pan S.
        • Pollard J.
        • Puri V.
        • Reese M.G.
        • Reinert K.
        • Remington K.
        • Saunders R.D.
        • Scheeler F.
        • Shen H.
        • Shue B.C.
        • Sidén-Kiamos I.
        • Simpson M.
        • Skupski M.P.
        • Smith T.
        • Spier E.
        • Spradling A.C.
        • Stapleton M.
        • Strong R.
        • Sun E.
        • Svirskas R.
        • Tector C.
        • Turner R.
        • Venter E.
        • Wang A.H.
        • Wang X.
        • Wang Z.Y.
        • Wassarman D.A.
        • Weinstock G.M.
        • Weissenbach J.
        • Williams S.M.
        • WoodageT K.C.
        • Worley D.
        • Wu S.
        • Yang Q.A.
        • Yao J.Ye
        • Yeh R.F.
        • Zaveri J.S.
        • Zhan M.
        • Zhang G.
        • Zhao Q.
        • Zheng L.
        • Zheng X.H.
        • Zhong F.N.
        • Zhong W.
        • Zhou X.
        • Zhu S.
        • Zhu X.
        • Smith H.O.
        • Gibbs R.A.
        • Myers E.W.
        • Rubin G.M.
        • Venter J.C.
        The genome sequence of Drosophila melanogaster.
        Science. 2000; 287 (Accessed 17 April 2018): 2185-2195
        • Fleischmann R.D.
        • Adams M.D.
        • White O.
        • Clayton R.A.
        • Kirkness E.F.
        • Kerlavage A.R.
        • Bult C.J.
        • Tomb J.F.
        • Dougherty B.A.
        • Merrick J.M.
        Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.
        Science. 1995; 269 (Accessed 17 April 2018): 496-512
      2. A comprehensive genetic linkage map of the human genome. NIH/CEPH Collaborative Mapping Group.
        Science. 1992; 258 (Accessed 17 April 2018): 67-86
        • McPherson J.D.
        • Marra M.
        • Hillier L.
        • Waterston R.H.
        • Chinwalla A.
        • Wallis J.
        • Sekhon M.
        • Wylie K.
        • Mardis E.R.
        • Wilson R.K.
        • Fulton R.
        • Kucaba T.A.
        • Wagner-McPherson C.
        • Barbazuk W.B.
        • Gregory S.G.
        • Humphray S.J.
        • French L.
        • Evans R.S.
        • Bethel G.
        • Whittaker A.
        • Holden J.L.
        • McCann O.T.
        • Dunham A.
        • Soderlund C.
        • Scott C.E.
        • Bentley D.R.
        • Schuler G.
        • Chen H.C.
        • Jang W.
        • Green E.D.
        • Idol J.R.
        • Maduro V.V.
        • Montgomery K.T.
        • Lee E.
        • Miller A.
        • Emerling S.
        • Kucherlapati R.
        • Gibbs R.
        • Scherer S.
        • Gorrell J.H.
        • Sodergren E.
        • Clerc-Blankenburg K.
        • Tabor P.
        • Naylor S.
        • Garcia D.
        • de Jong P.J.
        • Catanese J.J.
        • Nowak N.
        • Osoegawa K.
        • Qin S.
        • Rowen L.
        • Madan A.
        • Dors M.
        • Hood L.
        • Trask B.
        • Friedman C.
        • Massa H.
        • Cheung V.G.
        • Kirsch I.R.
        • Reid T.
        • Yonescu R.
        • Weissenbach J.
        • Bruls T.
        • Heilig R.
        • Branscomb E.
        • Olsen A.
        • Doggett N.
        • Cheng J.F.
        • Hawkins T.
        • Myers R.M.
        • Shang J.
        • Ramirez L.
        • Schmutz J.
        • Velasquez O.
        • Dixon K.
        • Stone N.E.
        • Cox D.R.
        • Haussler D.
        • Kent W.J.
        • Furey T.
        • Rogic S.
        • Kennedy S.
        • Jones S.
        • Rosenthal A.
        • Wen G.
        • Schilhabel M.
        • Gloeckner G.
        • Nyakatura G.
        • Siebert R.
        • Schlegelberger B.
        • Korenberg J.
        • Chen X.N.
        • Fujiyama A.
        • Hattori M.
        • Toyoda A.
        • Yada T.
        • Park H.S.
        • Sakaki Y.
        • Shimizu N.
        • Asakawa S.
        • Kawasaki K.
        • Sasaki T.
        • Shintani A.
        • Shimizu A.
        • Shibuya K.
        • Kudoh J.
        • Minoshima S.
        • Ramser J.
        • Seranski P.
        • Hoff C.
        • Poustka A.
        • Reinhardt R.
        • Lehrach H.
        International Human Genome Mapping Consortium, a physical map of the human genome.
        Nature. 2001; 409: 934-941https://doi.org/10.1038/35057157
        • Dietrich W.F.
        • Miller J.
        • Steen R.
        • Merchant M.A.
        • Damron-Boles D.
        • Husain Z.
        • Dredge R.
        • Daly M.J.
        • Ingalls K.A.
        • O’Connor T.J.
        • Evans C.A.
        • DeAngelis M.M.
        • Levinson D.M.
        • Kruglyak L.
        • Goodman N.
        • Copeland N.G.
        • Jenkins N.A.
        • Hawkins T.L.
        • Stein L.
        • Page D.C.
        • Lander E.S.
        A comprehensive genetic map of the mouse genome.
        Nature. 1996; 380: 149-152https://doi.org/10.1038/380149a0
        • Venter J.C.
        • Adams M.D.
        • Myers E.W.
        • Li P.W.
        • Mural R.J.
        • Sutton G.G.
        • Smith H.O.
        • Yandell M.
        • Evans C.A.
        • Holt R.A.
        • Gocayne J.D.
        • Amanatides P.
        • Ballew R.M.
        • Huson D.H.
        • Wortman J.R.
        • Zhang Q.
        • Kodira C.D.
        • Zheng X.H.
        • Chen L.
        • Skupski M.
        • Subramanian G.
        • Thomas P.D.
        • Zhang J.
        • Gabor Miklos G.L.
        • Nelson C.
        • Broder S.
        • Clark A.G.
        • Nadeau J.
        • McKusick V.A.
        • Zinder N.
        • Levine A.J.
        • Roberts R.J.
        • Simon M.
        • Slayman C.
        • Hunkapiller M.
        • Bolanos R.
        • Delcher A.
        • Dew I.
        • Fasulo D.
        • Flanigan M.
        • Florea L.
        • Halpern A.
        • Hannenhalli S.
        • Kravitz S.
        • Levy S.
        • Mobarry C.
        • Reinert K.
        • Remington K.
        • Abu-Threideh J.
        • Beasley E.
        • Biddick K.
        • Bonazzi V.
        • Brandon R.
        • Cargill M.
        • Chandramouliswaran I.
        • Charlab R.
        • Chaturvedi K.
        • Deng Z.
        • Di Francesco V.
        • Dunn P.
        • Eilbeck K.
        • Evangelista C.
        • Gabrielian A.E.
        • Gan W.
        • Ge W.
        • Gong F.
        • Gu Z.
        • Guan P.
        • Heiman T.J.
        • Higgins M.E.
        • Ji R.-R.
        • Ke Z.
        • Ketchum K.A.
        • Lai Z.
        • Lei Y.
        • Li Z.
        • Li J.
        • Liang Y.
        • Lin X.
        • Lu F.
        • Merkulov G.V.
        • Milshina N.
        • Moore H.M.
        • Naik A.K.
        • Narayan V.A.
        • Neelam B.
        • Nusskern D.
        • Rusch D.B.
        • Salzberg S.
        • Shao W.
        • Shue B.
        • Sun J.
        • Wang Z.Y.
        • Wang A.
        • Wang X.
        • Wang J.
        • Wei M.-H.
        • Wides R.
        • Xiao C.
        • Yan C.
        • Yao A.
        • Ye J.
        • Zhan M.
        • Zhang W.
        • Zhang H.
        • Zhao Q.
        • Zheng L.
        • Zhong F.
        • Zhong W.
        • Zhu S.C.
        • Zhao S.
        • Gilbert D.
        • Baumhueter S.
        • Spier G.
        • Carter C.
        • Cravchik A.
        • Woodage T.
        • Ali F.
        • An H.
        • Awe A.
        • Baldwin D.
        • Baden H.
        • Barnstead M.
        • Barrow I.
        • Beeson K.
        • Busam D.
        • Carver A.
        • Center A.
        • Cheng M.L.
        • Curry L.
        • Danaher S.
        • Davenport L.
        • Desilets R.
        • Dietz S.
        • Dodson K.
        • Doup L.
        • Ferriera S.
        • Garg N.
        • Gluecksmann A.
        • Hart B.
        • Haynes J.
        • Haynes C.
        • Heiner C.
        • Hladun S.
        • Hostin D.
        • Houck J.
        • Howland T.
        • Ibegwam C.
        • Johnson J.
        • Kalush F.
        • Kline L.
        • Koduru S.
        • Love A.
        • Mann F.
        • May D.
        • McCawley S.
        • McIntosh T.
        • McMullen I.
        • Moy M.
        • Moy L.
        • Murphy B.
        • Nelson K.
        • Pfannkoch C.
        • Pratts E.
        • Puri V.
        • Qureshi H.
        • Reardon M.
        • Rodriguez R.
        • Rogers Y.-H.
        • Romblad D.
        • Ruhfel B.
        • Scott R.
        • Sitter C.
        • Smallwood M.
        • Stewart E.
        • Strong R.
        • Suh E.
        • Thomas R.
        • Tint N.N.
        • Tse S.
        • Vech C.
        • Wang G.
        • Wetter J.
        • Williams S.
        • Williams M.
        • Windsor S.
        • Winn-Deen E.
        • Wolfe K.
        • Zaveri J.
        • Zaveri K.
        • Abril J.F.
        • Guigó R.
        • Campbell M.J.
        • Sjolander K.V.
        • Karlak B.
        • Kejariwal A.
        • Mi H.
        • Lazareva B.
        • Hatton T.
        • Narechania A.
        • Diemer K.
        • Muruganujan A.
        • Guo N.
        • Sato S.
        • Bafna V.
        • Istrail S.
        • Lippert R.
        • Schwartz R.
        • Walenz B.
        • Yooseph S.
        • Allen D.
        • Basu A.
        • Baxendale J.
        • Blick L.
        • Caminha M.
        • Carnes-Stine J.
        • Caulk P.
        • Chiang Y.-H.
        • Coyne M.
        • Dahlke C.
        • Mays A.D.
        • Dombroski M.
        • Donnelly M.
        • Ely D.
        • Esparham S.
        • Fosler C.
        • Gire H.
        • Glanowski S.
        • Glasser K.
        • Glodek A.
        • Gorokhov M.
        • Graham K.
        • Gropman B.
        • Harris M.
        • Heil J.
        • Henderson S.
        • Hoover J.
        • Jennings D.
        • Jordan C.
        • Jordan J.
        • Kasha J.
        • Kagan L.
        • Kraft C.
        • Levitsky A.
        • Lewis M.
        • Liu X.
        • Lopez J.
        • Ma D.
        • Majoros W.
        • McDaniel J.
        • Murphy S.
        • Newman M.
        • Nguyen T.
        • Nguyen N.
        • Nodell M.
        • Pan S.
        • Peck J.
        • Peterson M.
        • Rowe W.
        • Sanders R.
        • Scott J.
        • Simpson M.
        • Smith T.
        • Sprague A.
        • Stockwell T.
        • Turner R.
        • Venter E.
        • Wang M.
        • Wen M.
        • Wu D.
        • Wu M.
        • Xia A.
        • Zandieh A.
        • Zhu X.
        The sequence of the human genome.
        Science (80-.). 2001; 291: 1304-1351https://doi.org/10.1126/science.1058040
        • Lander E.S.
        • Linton L.M.
        • Birren B.
        • Nusbaum C.
        • Zody M.C.
        • Baldwin J.
        • et al.
        International Human Genome Sequencing Consortium, Initial sequencing and analysis of the human genome.
        Nature. 2001; 409: 860-921https://doi.org/10.1038/35057062
      3. I. Human Genome Sequencing Consortium, finishing the euchromatic sequence of the human genome.
        Nature. 2004; 431: 931-945https://doi.org/10.1038/nature03001
        • Daly M.J.
        • Rioux J.D.
        • Schaffner S.F.
        • Hudson T.J.
        • Lander E.S.
        High-resolution haplotype structure in the human genome.
        Nat. Genet. 2001; 29: 229-232https://doi.org/10.1038/ng1001-229
        • Patil N.
        • Berno A.J.
        • Hinds D.A.
        • Barrett W.A.
        • Doshi J.M.
        • Hacker C.R.
        • Kautzer C.R.
        • Lee D.H.
        • Marjoribanks C.
        • McDonough D.P.
        • Nguyen B.T.
        • Norris M.C.
        • Sheehan J.B.
        • Shen N.
        • Stern D.
        • Stokowski R.P.
        • Thomas D.J.
        • Trulson M.O.
        • Vyas K.R.
        • Frazer K.A.
        • Fodor S.P.
        • Cox D.R.
        Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21.
        Science. 2001; 294: 1719-1723https://doi.org/10.1126/science.1065573
        • Stephens J.C.
        • Schneider J.A.
        • Tanguay D.A.
        • Choi J.
        • Acharya T.
        • Stanley S.E.
        • Jiang R.
        • Messer C.J.
        • Chew A.
        • Han J.-H.
        • Duan J.
        • Carr J.L.
        • Lee M.S.
        • Koshy B.
        • Kumar A.M.
        • Zhang G.
        • Newell W.R.
        • Windemuth A.
        • Xu C.
        • Kalbfleisch T.S.
        • Shaner S.L.
        • Arnold K.
        • Schulz V.
        • Drysdale C.M.
        • Nandabalan K.
        • Judson R.S.
        • Ruaño G.
        • Vovis G.F.
        Haplotype variation and linkage disequilibrium in 313 human genes.
        Science. 2001; 293: 489-493https://doi.org/10.1126/science.1059431
        • Gabriel S.B.
        • Schaffner S.F.
        • Nguyen H.
        • Moore J.M.
        • Roy J.
        • Blumenstiel B.
        • Higgins J.
        • DeFelice M.
        • Lochner A.
        • Faggart M.
        • Liu-Cordero S.N.
        • Rotimi C.
        • Adeyemo A.
        • Cooper R.
        • Ward R.
        • Lander E.S.
        • Daly M.J.
        • Altshuler D.
        The structure of haplotype blocks in the human genome.
        Science (80-.). 2002; 296: 2225-2229https://doi.org/10.1126/science.1069424
        • Cavalli-Sforza L.L.
        • Wilson A.C.
        • Cantor C.R.
        • Cook-Deegan R.M.
        • King M.-C.
        Call for a worldwide survey of human genetic diversity: a vanishing opportunity for the Human Genome Project.
        Genomics. 1991; 11: 490-491https://doi.org/10.1016/0888-7543(91)90169-F
        • Cann H.M.
        • de Toma C.
        • Cazes L.
        • Legrand M.-F.
        • Morel V.
        • Piouffre L.
        • Bodmer J.
        • Bodmer W.F.
        • Bonne-Tamir B.
        • Cambon-Thomsen A.
        • Chen Z.
        • Chu J.
        • Carcassi C.
        • Contu L.
        • Du R.
        • Excoffier L.
        • Ferrara G.B.
        • Friedlaender J.S.
        • Groot H.
        • Gurwitz D.
        • Jenkins T.
        • Herrera R.J.
        • Huang X.
        • Kidd J.
        • Kidd K.K.
        • Langaney A.
        • Lin A.A.
        • Mehdi S.Q.
        • Parham P.
        • Piazza A.
        • Pistillo M.P.
        • Qian Y.
        • Shu Q.
        • Xu J.
        • Zhu S.
        • Weber J.L.
        • Greely H.T.
        • Feldman M.W.
        • Thomas G.
        • Dausset J.
        • Cavalli-Sforza L.L.
        A human genome diversity cell line panel.
        Science (80-.). 2002; 296 (261 LP-262)
        • Kruglyak L.
        Prospects for whole-genome linkage disequilibrium mapping of common disease genes.
        Nat. Genet. 1999; 22: 139-144https://doi.org/10.1038/9642
        • Weiss K.M.
        • Clark A.G.
        Linkage disequilibrium and the mapping of complex human traits.
        Trends Genet. 2002; 18 (Accessed 18 April 2018): 19-24
        • Sawyer S.L.
        • Mukherjee N.
        • Pakstis A.J.
        • Feuk L.
        • Kidd J.R.
        • Brookes A.J.
        • Kidd K.K.
        Linkage disequilibrium patterns vary substantially among populations.
        Eur. J. Hum. Genet. 2005; 13: 677-686https://doi.org/10.1038/sj.ejhg.5201368
        • Goldstein D.B.
        Erratum: Islands of linkage disequilibrium.
        Nat. Genet. 2001; 29: 109-111https://doi.org/10.1038/ng1001-109
        • Consortium I.H.
        • Frazer K.A.
        • Ballinger D.G.
        • Cox D.R.
        • Hinds D.A.
        • Stuve L.L.
        • Gibbs R.A.
        • Belmont J.W.
        • Boudreau A.
        • Hardenbol P.
        • Leal S.M.
        • Pasternak S.
        • Wheeler D.A.
        • Willis T.D.
        • Yu F.
        • Yang H.
        • Zeng C.
        • Gao Y.
        • Hu H.
        • Hu W.
        • Li C.
        • Lin W.
        • Liu S.
        • Pan H.
        • Tang X.
        • Wang J.
        • Wang W.
        • Yu J.
        • Zhang B.
        • Zhang Q.
        • Zhao H.
        • Zhao H.
        • Zhou J.
        • Gabriel S.B.
        • Barry R.
        • Blumenstiel B.
        • Camargo A.
        • Defelice M.
        • Faggart M.
        • Goyette M.
        • Gupta S.
        • Moore J.
        • Nguyen H.
        • Onofrio R.C.
        • Parkin M.
        • Roy J.
        • Stahl E.
        • Winchester E.
        • Ziaugra L.
        • Altshuler D.
        • Shen Y.
        • Yao Z.
        • Huang W.
        • Chu X.
        • He Y.
        • Jin L.
        • Liu Y.
        • Shen Y.
        • Sun W.
        • Wang H.
        • Wang Y.
        • Wang Y.
        • Xiong X.
        • Xu L.
        • Waye M.M.Y.
        • Tsui S.K.W.
        • Xue H.
        • Wong J.T.-F.
        • Galver L.M.
        • Fan J.-B.
        • Gunderson K.
        • Murray S.S.
        • Oliphant A.R.
        • Chee M.S.
        • Montpetit A.
        • Chagnon F.
        • Ferretti V.
        • Leboeuf M.
        • Olivier J.-F.
        • Phillips M.S.
        • Roumy S.
        • Sallée C.
        • Verner A.
        • Hudson T.J.
        • Kwok P.-Y.
        • Cai D.
        • Koboldt D.C.
        • Miller R.D.
        • Pawlikowska L.
        • Taillon-Miller P.
        • Xiao M.
        • Tsui L.-C.
        • Mak W.
        • Song Y.Q.
        • Tam P.K.H.
        • Nakamura Y.
        • Kawaguchi T.
        • Kitamoto T.
        • Morizono T.
        • Nagashima A.
        • Ohnishi Y.
        • Sekine A.
        • Tanaka T.
        • Tsunoda T.
        • Deloukas P.
        • Bird C.P.
        • Delgado M.
        • Dermitzakis E.T.
        • Gwilliam R.
        • Hunt S.
        • Morrison J.
        • Powell D.
        • Stranger B.E.
        • Whittaker P.
        • Bentley D.R.
        • Daly M.J.
        • de Bakker P.I.W.
        • Barrett J.
        • Chretien Y.R.
        • Maller J.
        • McCarroll S.
        • Patterson N.
        • Pe’er I.
        • Price A.
        • Purcell S.
        • Richter D.J.
        • Sabeti P.
        • Saxena R.
        • Schaffner S.F.
        • Sham P.C.
        • Varilly P.
        • Altshuler D.
        • Stein L.D.
        • Krishnan L.
        • Smith A.V.
        • Tello-Ruiz M.K.
        • Thorisson G.A.
        • Chakravarti A.
        • Chen P.E.
        • Cutler D.J.
        • Kashuk C.S.
        • Lin S.
        • Abecasis G.R.
        • Guan W.
        • Li Y.
        • Munro H.M.
        • Qin Z.S.
        • Thomas D.J.
        • McVean G.
        • Auton A.
        • Bottolo L.
        • Cardin N.
        • Eyheramendy S.
        • Freeman C.
        • Marchini J.
        • Myers S.
        • Spencer C.
        • Stephens M.
        • Donnelly P.
        • Cardon L.R.
        • Clarke G.
        • Evans D.M.
        • Morris A.P.
        • Weir B.S.
        • Tsunoda T.
        • Mullikin J.C.
        • Sherry S.T.
        • Feolo M.
        • Skol A.
        • Zhang H.
        • Zeng C.
        • Zhao H.
        • Matsuda I.
        • Fukushima Y.
        • Macer D.R.
        • Suda E.
        • Rotimi C.N.
        • Adebamowo C.A.
        • Ajayi I.
        • Aniagwu T.
        • Marshall P.A.
        • Nkwodimmah C.
        • Royal C.D.M.
        • Leppert M.F.
        • Dixon M.
        • Peiffer A.
        • Qiu R.
        • Kent A.
        • Kato K.
        • Niikawa N.
        • Adewole I.F.
        • Knoppers B.M.
        • Foster M.W.
        • Clayton E.W.
        • Watkin J.
        • Gibbs R.A.
        • Belmont J.W.
        • Muzny D.
        • Nazareth L.
        • Sodergren E.
        • Weinstock G.M.
        • Wheeler D.A.
        • Yakub I.
        • Gabriel S.B.
        • Onofrio R.C.
        • Richter D.J.
        • Ziaugra L.
        • Birren B.W.
        • Daly M.J.
        • Altshuler D.
        • Wilson R.K.
        • Fulton L.L.
        • Rogers J.
        • Burton J.
        • Carter N.P.
        • Clee C.M.
        • Griffiths M.
        • Jones M.C.
        • McLay K.
        • Plumb R.W.
        • Ross M.T.
        • Sims S.K.
        • Willey D.L.
        • Chen Z.
        • Han H.
        • Kang L.
        • Godbout M.
        • Wallenburg J.C.
        • L’Archevêque P.
        • Bellemare G.
        • Saeki K.
        • Wang H.
        • An D.
        • Fu H.
        • Li Q.
        • Wang Z.
        • Wang R.
        • Holden A.L.
        • Brooks L.D.
        • McEwen J.E.
        • Guyer M.S.
        • Wang V.O.
        • Peterson J.L.
        • Shi M.
        • Spiegel J.
        • Sung L.M.
        • Zacharia L.F.
        • Collins F.S.
        • Kennedy K.
        • Jamieson R.
        • Stewart J.
        A second generation human haplotype map of over 3.1 million SNPs.
        Nature. 2007; 449: 851-861https://doi.org/10.1038/nature06258
        • International HapMap 3 Consortium
        • Altshuler D.M.
        • Gibbs R.A.
        • Peltonen L.
        • Altshuler D.M.
        • Gibbs R.A.
        • Peltonen L.
        • Dermitzakis E.
        • Schaffner S.F.
        • Yu F.
        • Peltonen L.
        • Dermitzakis E.
        • Bonnen P.E.
        • Altshuler D.M.
        • Gibbs R.A.
        • de Bakker P.I.W.
        • Deloukas P.
        • Gabriel S.B.
        • Gwilliam R.
        • Hunt S.
        • Inouye M.
        • Jia X.
        • Palotie A.
        • Parkin M.
        • Whittaker P.
        • Yu F.
        • Chang K.
        • Hawes A.
        • Lewis L.R.
        • Ren Y.
        • Wheeler D.
        • Gibbs R.A.
        • Muzny D.M.
        • Barnes C.
        • Darvishi K.
        • Hurles M.
        • Korn J.M.
        • Kristiansson K.
        • Lee C.
        • McCarrol S.A.
        • Nemesh J.
        • Dermitzakis E.
        • Keinan A.
        • Montgomery S.B.
        • Pollack S.
        • Price A.L.
        • Soranzo N.
        • Bonnen P.E.
        • Gibbs R.A.
        • Gonzaga-Jauregui C.
        • Keinan A.
        • Price A.L.
        • Yu F.
        • Anttila V.
        • Brodeur W.
        • Daly M.J.
        • Leslie S.
        • McVean G.
        • Moutsianas L.
        • Nguyen H.
        • Schaffner S.F.
        • Zhang Q.
        • Ghori M.J.R.
        • McGinnis R.
        • McLaren W.
        • Pollack S.
        • Price A.L.
        • Schaffner S.F.
        • Takeuchi F.
        • Grossman S.R.
        • Shlyakhter I.
        • Hostetter E.B.
        • Sabeti P.C.
        • Adebamowo C.A.
        • Foster M.W.
        • Gordon D.R.
        • Licinio J.
        • Manca M.C.
        • Marshall P.A.
        • Matsuda I.
        • Ngare D.
        • Wang V.O.
        • Reddy D.
        • Rotimi C.N.
        • Royal C.D.
        • Sharp R.R.
        • Zeng C.
        • Brooks L.D.
        • McEwen J.E.
        Integrating common and rare genetic variation in diverse human populations.
        Nature. 2010; 467: 52-58https://doi.org/10.1038/nature09298
        • Gibbs R.A.
        • Belmont J.W.
        • Hardenbol P.
        • Willis T.D.
        • Yu F.
        • Zhang H.
        • Zeng C.
        • Matsuda I.
        • Fukushima Y.
        • Macer D.R.
        • Suda E.
        • Stein L.D.
        • Cunningham F.
        • Kanani A.
        • Thorisson G.A.
        • Chakravarti A.
        • Chen P.E.
        • Cutler D.J.
        • Kashuk C.S.
        • Donnelly P.
        • Marchini J.
        • McVean G.A.T.
        • Myers S.R.
        • Cardon L.R.
        • Abecasis G.R.
        • Morris A.
        • Weir B.S.
        • Mullikin J.C.
        • Sherry S.T.
        • Feolo M.
        • Altshuler D.
        • Daly M.J.
        • Schaffner S.F.
        • Qiu R.
        • Kent A.
        • Dunston G.M.
        • Kato K.
        • Niikawa N.
        • Knoppers B.M.
        • Foster M.W.
        • Clayton E.W.
        • Wang V.O.
        • Watkin J.
        • Gibbs R.A.
        • Belmont J.W.
        • Sodergren E.
        • Weinstock G.M.
        • Wilson R.K.
        • Fulton L.L.
        • Rogers J.
        • Birren B.W.
        • Han H.
        • Wang H.
        • Godbout M.
        • Wallenburg J.C.
        • L’Archevêque P.
        • Bellemare G.
        • Todani K.
        • Fujita T.
        • Tanaka S.
        • Holden A.L.
        • Lai E.H.
        • Collins F.S.
        • Brooks L.D.
        • McEwen J.E.
        • Guyer M.S.
        • Jordan E.
        • Peterson J.L.
        • Spiegel J.
        • Sung L.M.
        • Zacharia L.F.
        • Kennedy K.
        • Dunn M.G.
        • Seabrook R.
        • Shillito M.
        • Skene B.
        • Stewart J.G.
        • Valle D.L.
        • Clayton E.W.
        • Jorde L.B.
        • Belmont J.W.
        • Chakravarti A.
        • Cho M.K.
        • Duster T.
        • Foster M.W.
        • Jasperse M.
        • Knoppers B.M.
        • Kwok P.-Y.
        • Licinio J.
        • Long J.C.
        • Marshall P.A.
        • Ossorio P.N.
        • Wang V.O.
        • Rotimi C.N.
        • Royal C.D.M.
        • Spallone P.
        • Terry S.F.
        • Lander E.S.
        • Lai E.H.
        • Nickerson D.A.
        • Abecasis G.R.
        • Altshuler D.
        • Bentley D.R.
        • Boehnke M.
        • Cardon L.R.
        • Daly M.J.
        • Deloukas P.
        • Douglas J.A.
        • Gabriel S.B.
        • Hudson R.R.
        • Hudson T.J.
        • Kruglyak L.
        • Kwok P.-Y.
        • Nakamura Y.
        • Nussbaum R.L.
        • Royal C.D.M.
        • Schaffner S.F.
        • Sherry S.T.
        • Stein L.D.
        • Tanaka T.
        The international HapMap project.
        Nature. 2003; 426: 789-796https://doi.org/10.1038/nature02168
        • Gu S.
        • Pakstis A.J.
        • Li H.
        • Speed W.C.
        • Kidd J.R.
        • Kidd K.K.
        Significant variation in haplotype block structure but conservation in tagSNP patterns among global populations.
        Eur. J. Hum. Genet. 2007; 15: 302-312https://doi.org/10.1038/sj.ejhg.5201751
      4. International HapMap Consortium, A haplotype map of the human genome.
        Nature. 2005; 437: 1299-1320https://doi.org/10.1038/nature04226
        • Zhao H.
        • Pakstis A.J.
        • Kidd J.R.
        • Kidd K.K.
        Assessing linkage disequilibrium in a complex genetic system. I. Overall deviation from random association.
        Ann. Hum. Genet. 1999; 63: 167-179
        • Ge J.
        • Budowle B.
        • Planz J.V.
        • Chakraborty R.
        Haplotype block: a new type of forensic DNA markers.
        Int. J. Legal Med. 2010; 124: 353-361https://doi.org/10.1007/s00414-009-0400-5
        • Pakstis A.J.
        • Fang R.
        • Furtado M.R.
        • Kidd J.R.
        • Kidd K.K.
        Mini-haplotypes as lineage informative SNPs and ancestry inference SNPs.
        Eur. J. Hum. Genet. 2012; 20: 1148-1154https://doi.org/10.1038/ejhg.2012.69
        • Donnelly M.P.
        • Paschou P.
        • Grigorenko E.
        • Gurwitz D.
        • Mehdi S.Q.
        • Kajuna S.L.B.
        • Barta C.
        • Kungulilo S.
        • Karoma N.J.
        • Lu R.-B.
        • Zhukova O.V.
        • Kim J.-J.
        • Comas D.
        • Siniscalco M.
        • New M.
        • Li P.
        • Li H.
        • Manolopoulos V.G.
        • Speed W.C.
        • Rajeevan H.
        • Pakstis A.J.
        • Kidd J.R.
        • Kidd K.K.
        The distribution and most recent common ancestor of the 17q21 inversion in humans.
        Am. J. Hum. Genet. 2010; 86: 161-171https://doi.org/10.1016/j.ajhg.2010.01.007
        • Speed W.C.
        • Kang S.P.
        • Tuck D.P.
        • Harris L.N.
        • Kidd K.K.
        Global variation in CYP2C8-CYP2C9 functional haplotypes.
        Pharmacogenomics J. 2009; 9: 283-290https://doi.org/10.1038/tpj.2009.10
        • Speed W.C.
        • O’Roak B.J.
        • Tárnok Z.
        • Barta C.
        • Pakstis A.J.
        • State M.W.
        • Kidd K.K.
        Haplotype evolution of SLITRK1, a candidate gene for Gilles de la Tourette syndrome.
        Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008; 147B: 463-466https://doi.org/10.1002/ajmg.b.30641
        • Yamtich J.
        • Speed W.C.
        • Straka E.
        • Kidd J.R.
        • Sweasy J.B.
        • Kidd K.K.
        Population-specific variation in haplotype composition and heterozygosity at the POLB locus.
        DNA Repair (Amst.). 2009; 8: 579-584https://doi.org/10.1016/j.dnarep.2008.12.005
        • Durbin R.M.
        • Altshuler D.L.
        • Durbin R.M.
        • Abecasis G.R.
        • Bentley D.R.
        • Chakravarti A.
        • Clark A.G.
        • Collins F.S.
        • De La Vega F.M.
        • Donnelly P.
        • Egholm M.
        • Flicek P.
        • Gabriel S.B.
        • Gibbs R.A.
        • Knoppers B.M.
        • Lander E.S.
        • Lehrach H.
        • Mardis E.R.
        • McVean G.A.
        • Nickerson D.A.
        • Peltonen L.
        • Schafer A.J.
        • Sherry S.T.
        • Wang J.
        • Wilson R.K.
        • Gibbs R.A.
        • Deiros D.
        • Metzker M.
        • Muzny D.
        • Reid J.
        • Wheeler D.
        • Wang J.
        • Li J.
        • Jian M.
        • Li G.
        • Li R.
        • Liang H.
        • Tian G.
        • Wang B.
        • Wang J.
        • Wang W.
        • Yang H.
        • Zhang X.
        • Zheng H.
        • Lander E.S.
        • Altshuler D.L.
        • Ambrogio L.
        • Bloom T.
        • Cibulskis K.
        • Fennell T.J.
        • Gabriel S.B.
        • Jaffe D.B.
        • Shefler E.
        • Sougnez C.L.
        • Bentley D.R.
        • Gormley N.
        • Humphray S.
        • Kingsbury Z.
        • Koko-Gonzales P.
        • Stone J.
        • McKernan K.J.
        • Costa G.L.
        • Ichikawa J.K.
        • Lee C.C.
        • Sudbrak R.
        • Lehrach H.
        • Borodina T.A.
        • Dahl A.
        • Davydov A.N.
        • Marquardt P.
        • Mertes F.
        • Nietfeld W.
        • Rosenstiel P.
        • Schreiber S.
        • Soldatov A.V.
        • Timmermann B.
        • Tolzmann M.
        • Egholm M.
        • Affourtit J.
        • Ashworth D.
        • Attiya S.
        • Bachorski M.
        • Buglione E.
        • Burke A.
        • Caprio A.
        • Celone C.
        • Clark S.
        • Conners D.
        • Desany B.
        • Gu L.
        • Guccione L.
        • Kao K.
        • Kebbel A.
        • Knowlton J.
        • Labrecque M.
        • McDade L.
        • Mealmaker C.
        • Minderman M.
        • Nawrocki A.
        • Niazi F.
        • Pareja K.
        • Ramenani R.
        • Riches D.
        • Song W.
        • Turcotte C.
        • Wang S.
        • Mardis E.R.
        • Wilson R.K.
        • Dooling D.
        • Fulton L.
        • Fulton R.
        • Weinstock G.
        • Durbin R.M.
        • Burton J.
        • Carter D.M.
        • Churcher C.
        • Coffey A.
        • Cox A.
        • Palotie A.
        • Quail M.
        • Skelly T.
        • Stalker J.
        • Swerdlow H.P.
        • Turner D.
        • De Witte A.
        • Giles S.
        • Gibbs R.A.
        • Wheeler D.
        • Bainbridge M.
        • Challis D.
        • Sabo A.
        • Yu F.
        • Yu J.
        • Wang J.
        • Fang X.
        • Guo X.
        • Li R.
        • Li Y.
        • Luo R.
        • Tai S.
        • Wu H.
        • Zheng H.
        • Zheng X.
        • Zhou Y.
        • Li G.
        • Wang J.
        • Yang H.
        • Marth G.T.
        • Garrison E.P.
        • Huang W.
        • Indap A.
        • Kural D.
        • Lee W.-P.
        • Fung Leong W.
        • Quinlan A.R.
        • Stewart C.
        • Stromberg M.P.
        • Ward A.N.
        • Wu J.
        • Lee C.
        • Mills R.E.
        • Shi X.
        • Daly M.J.
        • DePristo M.A.
        • Altshuler D.L.
        • Ball A.D.
        • Banks E.
        • Bloom T.
        • Browning B.L.
        • Cibulskis K.
        • Fennell T.J.
        • Garimella K.V.
        • Grossman S.R.
        • Handsaker R.E.
        • Hanna M.
        • Hartl C.
        • Jaffe D.B.
        • Kernytsky A.M.
        • Korn J.M.
        • Li H.
        • Maguire J.R.
        • McCarroll S.A.
        • McKenna A.
        • Nemesh J.C.
        • Philippakis A.A.
        • Poplin R.E.
        • Price A.
        • Rivas M.A.
        • Sabeti P.C.
        • Schaffner S.F.
        • Shefler E.
        • Shlyakhter I.A.
        • Cooper D.N.
        • Ball E.V.
        • Mort M.
        • Phillips A.D.
        • Stenson P.D.
        • Sebat J.
        • Makarov V.
        • Ye K.
        • Yoon S.C.
        • Bustamante C.D.
        • Clark A.G.
        • Boyko A.
        • Degenhardt J.
        • Gravel S.
        • Gutenkunst R.N.
        • Kaganovich M.
        • Keinan A.
        • Lacroute P.
        • Ma X.
        • Reynolds A.
        • Clarke L.
        • Flicek P.
        • Cunningham F.
        • Herrero J.
        • Keenen S.
        • Kulesha E.
        • Leinonen R.
        • McLaren W.M.
        • Radhakrishnan R.
        • Smith R.E.
        • Zalunin V.
        • Zheng-Bradley X.
        • Korbel J.O.
        • Stütz A.M.
        • Humphray S.
        • Bauer M.
        • Keira Cheetham R.
        • Cox T.
        • Eberle M.
        • James T.
        • Kahn S.
        • Murray L.
        • Chakravarti A.
        • Ye K.
        • De La Vega F.M.
        • Fu Y.
        • Hyland F.C.L.
        • Manning J.M.
        • McLaughlin S.F.
        • Peckham H.E.
        • Sakarya O.
        • Sun Y.A.
        • Tsung E.F.
        • Batzer M.A.
        • Konkel M.K.
        • Walker J.A.
        • Sudbrak R.
        • Albrecht M.W.
        • Amstislavskiy V.S.
        • Herwig R.
        • Parkhomchuk D.V.
        • Sherry S.T.
        • Agarwala R.
        • Khouri H.M.
        • Morgulis A.O.
        • Paschall J.E.
        • Phan L.D.
        • Rotmistrovsky K.E.
        • Sanders R.D.
        • Shumway M.F.
        • Xiao C.
        • McVean G.A.
        • Auton A.
        • Iqbal Z.
        • Lunter G.
        • Marchini J.L.
        • Moutsianas L.
        • Myers S.
        • Tumian A.
        • Desany B.
        • Knight J.
        • Winer R.
        • Craig D.W.
        • Beckstrom-Sternberg S.M.
        • Christoforides A.
        • Kurdoglu A.A.
        • Pearson J.V.
        • Sinari S.A.
        • Tembe W.D.
        • Haussler D.
        • Hinrichs A.S.
        • Katzman S.J.
        • Kern A.
        • Kuhn R.M.
        • Przeworski M.
        • Hernandez R.D.
        • Howie B.
        • Kelley J.L.
        • Cord Melton S.
        • Abecasis G.R.
        • Li Y.
        • Anderson P.
        • Blackwell T.
        • Chen W.
        • Cookson W.O.
        • Ding J.
        • Min Kang H.
        • Lathrop M.
        • Liang L.
        • Moffatt M.F.
        • Scheet P.
        • Sidore C.
        • Snyder M.
        • Zhan X.
        • Zöllner S.
        • Awadalla P.
        • Casals F.
        • Idaghdour Y.
        • Keebler J.
        • Stone E.A.
        • Zilversmit M.
        • Jorde L.
        • Xing J.
        • Eichler E.E.
        • Aksay G.
        • Alkan C.
        • Hajirasouliha I.
        • Hormozdiari F.
        • Kidd J.M.
        • Cenk Sahinalp S.
        • Sudmant P.H.
        • Mardis E.R.
        • Chen K.
        • Chinwalla A.
        • Ding L.
        • Koboldt D.C.
        • McLellan M.D.
        • Dooling D.
        • Weinstock G.
        • Wallis J.W.
        • Wendl M.C.
        • Zhang Q.
        • Durbin R.M.
        • Albers C.A.
        • Ayub Q.
        • Balasubramaniam S.
        • Barrett J.C.
        • Carter D.M.
        • Chen Y.
        • Conrad D.F.
        • Danecek P.
        • Dermitzakis E.T.
        • Hu M.
        • Huang N.
        • Hurles M.E.
        • Jin H.
        • Jostins L.
        • Keane T.M.
        • Quang Le S.
        • Lindsay S.
        • Long Q.
        • MacArthur D.G.
        • Montgomery S.B.
        • Parts L.
        • Stalker J.
        • Tyler-Smith C.
        • Walter K.
        • Zhang Y.
        • Gerstein M.B.
        • Snyder M.
        • Abyzov A.
        • Balasubramanian S.
        • Bjornson R.
        • Du J.
        • Grubert F.
        • Habegger L.
        • Haraksingh R.
        • Jee J.
        • Khurana E.
        • Lam H.Y.K.
        • Leng J.
        • Jasmine Mu X.
        • Urban A.E.
        • Zhang Z.
        • Li Y.
        • Luo R.
        • Marth G.T.
        • Garrison E.P.
        • Kural D.
        • Quinlan A.R.
        • Stewart C.
        • Stromberg M.P.
        • Ward A.N.
        • Wu J.
        • Lee C.
        • Mills R.E.
        • Shi X.
        • McCarroll S.A.
        • Banks E.
        • DePristo M.A.
        • Handsaker R.E.
        • Hartl C.
        • Korn J.M.
        • Li H.
        • Nemesh J.C.
        • Sebat J.
        • Makarov V.
        • Ye K.
        • Yoon S.C.
        • Degenhardt J.
        • Kaganovich M.
        • Clarke L.
        • Smith R.E.
        • Zheng-Bradley X.
        • Korbel J.O.
        • Humphray S.
        • Keira Cheetham R.
        • Eberle M.
        • Kahn S.
        • Murray L.
        • Ye K.
        • De La Vega F.M.
        • Fu Y.
        • Peckham H.E.
        • Sun Y.A.
        • Batzer M.A.
        • Konkel M.K.
        • Walker J.A.
        • Xiao C.
        • Iqbal Z.
        • Desany B.
        • Blackwell T.
        • Snyder M.
        • Xing J.
        • Eichler E.E.
        • Aksay G.
        • Alkan C.
        • Hajirasouliha I.
        • Hormozdiari F.
        • Kidd J.M.
        • Chen K.
        • Chinwalla A.
        • Ding L.
        • McLellan M.D.
        • Wallis J.W.
        • Hurles M.E.
        • Conrad D.F.
        • Walter K.
        • Zhang Y.
        • Gerstein M.B.
        • Snyder M.
        • Abyzov A.
        • Du J.
        • Grubert F.
        • Haraksingh R.
        • Jee J.
        • Khurana E.
        • Lam H.Y.K.
        • Leng J.
        • Jasmine Mu X.
        • Urban A.E.
        • Zhang Z.
        • Gibbs R.A.
        • Bainbridge M.
        • Challis D.
        • Coafra C.
        • Dinh H.
        • Kovar C.
        • Lee S.
        • Muzny D.
        • Nazareth L.
        • Reid J.
        • Sabo A.
        • Yu F.
        • Yu J.
        • Marth G.T.
        • Garrison E.P.
        • Indap A.
        • Fung Leong W.
        • Quinlan A.R.
        • Stewart C.
        • Ward A.N.
        • Wu J.
        • Cibulskis K.
        • Fennell T.J.
        • Gabriel S.B.
        • Garimella K.V.
        • Hartl C.
        • Shefler E.
        • Sougnez C.L.
        • Wilkinson J.
        • Clark A.G.
        • Gravel S.
        • Grubert F.
        • Clarke L.
        • Flicek P.
        • Smith R.E.
        • Zheng-Bradley X.
        • Sherry S.T.
        • Khouri H.M.
        • Paschall J.E.
        • Shumway M.F.
        • Xiao C.
        • McVean G.A.
        • Katzman S.J.
        • Abecasis G.R.
        • Blackwell T.
        • Mardis E.R.
        • Dooling D.
        • Fulton L.
        • Fulton R.
        • Koboldt D.C.
        • Durbin R.M.
        • Balasubramaniam S.
        • Coffey A.
        • Keane T.M.
        • MacArthur D.G.
        • Palotie A.
        • Scott C.
        • Stalker J.
        • Tyler-Smith C.
        • Gerstein M.B.
        • Balasubramanian S.
        • Chakravarti A.
        • Knoppers B.M.
        • Abecasis G.R.
        • Bustamante C.D.
        • Gharani N.
        • Gibbs R.A.
        • Jorde L.
        • Kaye J.S.
        • Kent A.
        • Li T.
        • McGuire A.L.
        • McVean G.A.
        • Ossorio P.N.
        • Rotimi C.N.
        • Su Y.
        • Toji L.H.
        • Tyler-Smith C.
        • Brooks L.D.
        • Felsenfeld A.L.
        • McEwen J.E.
        • Abdallah A.
        • Juenger C.R.
        • Clemm N.C.
        • Collins F.S.
        • Duncanson A.
        • Green E.D.
        • Guyer M.S.
        • Peterson J.L.
        • Schafer A.J.
        • Abecasis G.R.
        • Altshuler D.L.
        • Auton A.
        • Brooks L.D.
        • Durbin R.M.
        • Gibbs R.A.
        • Hurles M.E.
        • McVean G.A.
        A map of human genome variation from population-scale sequencing.
        Nature. 2010; 467: 1061-1073https://doi.org/10.1038/nature09534
        • Sudmant P.H.
        • Rausch T.
        • Gardner E.J.
        • Handsaker R.E.
        • Abyzov A.
        • Huddleston J.
        • Zhang Y.
        • Ye K.
        • Jun G.
        • Hsi-Yang Fritz M.
        • Konkel M.K.
        • Malhotra A.
        • Stütz A.M.
        • Shi X.
        • Paolo Casale F.
        • Chen J.
        • Hormozdiari F.
        • Dayama G.
        • Chen K.
        • Malig M.
        • Chaisson M.J.P.
        • Walter K.
        • Meiers S.
        • Kashin S.
        • Garrison E.
        • Auton A.
        • Lam H.Y.K.
        • Jasmine Mu X.
        • Alkan C.
        • Antaki D.
        • Bae T.
        • Cerveira E.
        • Chines P.
        • Chong Z.
        • Clarke L.
        • Dal E.
        • Ding L.
        • Emery S.
        • Fan X.
        • Gujral M.
        • Kahveci F.
        • Kidd J.M.
        • Kong Y.
        • Lameijer E.-W.
        • McCarthy S.
        • Flicek P.
        • Gibbs R.A.
        • Marth G.
        • Mason C.E.
        • Menelaou A.
        • Muzny D.M.
        • Nelson B.J.
        • Noor A.
        • Parrish N.F.
        • Pendleton M.
        • Quitadamo A.
        • Raeder B.
        • Schadt E.E.
        • Romanovitch M.
        • Schlattl A.
        • Sebra R.
        • Shabalin A.A.
        • Untergasser A.
        • Walker J.A.
        • Wang M.
        • Yu F.
        • Zhang C.
        • Zhang J.
        • Zheng-Bradley X.
        • Zhou W.
        • Zichner T.
        • Sebat J.
        • Batzer M.A.
        • McCarroll S.A.
        • Mills R.E.
        • Gerstein M.B.
        • Bashir A.
        • Stegle O.
        • Devine S.E.
        • Lee C.
        • Eichler E.E.
        • Korbel J.O.
        • Korbel J.O.
        An integrated map of structural variation in 2,504 human genomes.
        Nature. 2015; 526: 75-81https://doi.org/10.1038/nature15394
        • Auton A.
        • Abecasis G.R.
        • Altshuler D.M.
        • Durbin R.M.
        • Abecasis G.R.
        • Bentley D.R.
        • et al.
        A global reference for human genetic variation.
        Nature. 2015; 526: 68-74https://doi.org/10.1038/nature15393
        • Jin L.
        • Underhill P.A.
        • Doctor V.
        • Davis R.W.
        • Shen P.
        • Cavalli-Sforza L.L.
        • Oefner P.J.
        Distribution of haplotypes from a chromosome 21 region distinguishes multiple prehistoric human migrations.
        Proc. Natl. Acad. Sci. 1999; 96: 3796-3800https://doi.org/10.1073/pnas.96.7.3796
        • Kidd J.R.
        • Friedlaender F.
        • Pakstis A.J.
        • Furtado M.
        • Fang R.
        • Wang X.
        • Nievergelt C.M.
        • Kidd K.K.
        Single nucleotide polymorphisms and haplotypes in Native American populations.
        Am. J. Phys. Anthropol. 2011; 146: 495-502https://doi.org/10.1002/ajpa.21560
        • Schlebusch C.M.
        • Soodyall H.
        Extensive population structure in San, Khoe, and mixed ancestry populations from southern Africa revealed by 44 short 5-SNP haplotypes.
        Hum. Biol. 2012; 84: 695-724https://doi.org/10.3378/027.084.0603
        • Donnelly M.P.
        • Paschou P.
        • Grigorenko E.
        • Gurwitz D.
        • Barta C.
        • Lu R.-B.
        • Zhukova O.V.
        • Kim J.-J.
        • Siniscalco M.
        • New M.
        • Li H.
        • Kajuna S.L.B.
        • Manolopoulos V.G.
        • Speed W.C.
        • Pakstis A.J.
        • Kidd J.R.
        • Kidd K.K.
        A global view of the OCA2-HERC2 region and pigmentation.
        Hum. Genet. 2012; 131: 683-696https://doi.org/10.1007/s00439-011-1110-x
        • Butler J.M.
        Fundamentals of Forensic DNA Typing.
        2010https://doi.org/10.1016/B978-0-12-374999-4.00016-3
        • Phillips C.
        • Salas A.
        • Sánchez J.J.
        • Fondevila M.
        • Gómez-Tato A.
        • Alvarez-Dios J.
        • Calaza M.
        • de Cal M.C.
        • Ballard D.
        • Lareu M.V.
        • Carracedo A.
        SNPforID Consortium, inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs.
        Forensic Sci. Int. Genet. 2007; 1: 273-280https://doi.org/10.1016/j.fsigen.2007.06.008
        • Pakstis A.J.
        • Speed W.C.
        • Fang R.
        • Hyland F.C.L.
        • Furtado M.R.
        • Kidd J.R.
        • Kidd K.K.
        SNPs for a universal individual identification panel.
        Hum. Genet. 2010; 127: 315-324https://doi.org/10.1007/s00439-009-0771-1
        • Kidd K.K.
        • Pakstis A.J.
        • Speed W.C.
        • Grigorenko E.L.
        • Kajuna S.L.B.
        • Karoma N.J.
        • Kungulilo S.
        • Kim J.-J.
        • Lu R.-B.
        • Odunsi A.
        • Okonofua F.
        • Parnas J.
        • Schulz L.O.
        • Zhukova O.V.
        • Kidd J.R.
        Developing a SNP panel for forensic identification of individuals.
        Forensic Sci. Int. 2006; 164: 20-32https://doi.org/10.1016/j.forsciint.2005.11.017
        • Kidd K.K.
        • Kidd J.R.
        • Speed W.C.
        • Fang R.
        • Furtado M.R.
        • Hyland F.C.L.
        • Pakstis A.J.
        Expanding data and resources for forensic use of SNPs in individual identification.
        Forensic Sci. Int. Genet. 2012; 6: 646-652https://doi.org/10.1016/j.fsigen.2012.02.012
        • Sanchez J.J.
        • Phillips C.
        • Børsting C.
        • Balogh K.
        • Bogus M.
        • Fondevila M.
        • Harrison C.D.
        • Musgrave-Brown E.
        • Salas A.
        • Syndercombe-Court D.
        • Schneider P.M.
        • Carracedo A.
        • Morling N.
        A multiplex assay with 52 single nucleotide polymorphisms for human identification.
        Electrophoresis. 2006; 27: 1713-1724https://doi.org/10.1002/elps.200500671
        • Algee-Hewitt B.F.B.
        • Edge M.D.
        • Kim J.
        • Li J.Z.
        • Rosenberg N.A.
        Individual identifiability predicts population identifiability in forensic microsatellite markers.
        Curr. Biol. 2016; 26: 935-942https://doi.org/10.1016/j.cub.2016.01.065
        • Phillips C.
        Forensic genetic analysis of bio-geographical ancestry.
        Forensic Sci. Int. Genet. 2015; 18: 49-65https://doi.org/10.1016/j.fsigen.2015.05.012
        • Bulbul O.
        • Speed W.C.
        • Gurkan C.
        • Soundararajan U.
        • Rajeevan H.
        • Pakstis A.J.
        • Kidd K.K.
        Improving ancestry distinctions among Southwest Asian populations.
        Forensic Sci. Int. Genet. 2018; 35: 14-20https://doi.org/10.1016/j.fsigen.2018.03.010
        • Fondevila M.
        • Phillips C.
        • Santos C.
        • Freire Aradas A.
        • Vallone P.M.
        • Butler J.M.
        • Lareu M.V.
        • Carracedo A.
        Revision of the SNPforID 34-plex forensic ancestry test: assay enhancements, standard reference sample genotypes and extended population studies.
        Forensic Sci. Int. Genet. 2013; 7: 63-74https://doi.org/10.1016/j.fsigen.2012.06.007
        • Kosoy R.
        • Nassir R.
        • Tian C.
        • White P.A.
        • Butler L.M.
        • Silva G.
        • Kittles R.
        • Alarcon-Riquelme M.E.
        • Gregersen P.K.
        • Belmont J.W.
        • De La Vega F.M.
        • Seldin M.F.
        Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America.
        Hum. Mutat. 2009; 30: 69-78https://doi.org/10.1002/humu.20822
        • Gettings K.B.
        • Lai R.
        • Johnson J.L.
        • Peck M.A.
        • Hart J.A.
        • Gordish-Dressman H.
        • Schanfield M.S.
        • Podini D.S.
        A 50-SNP assay for biogeographic ancestry and phenotype prediction in the U.S. population.
        Forensic Sci. Int. Genet. 2014; 8: 101-108https://doi.org/10.1016/j.fsigen.2013.07.010
        • Bulbul O.
        • Cherni L.
        • Khodjet-el-khil H.
        • Rajeevan H.
        • Kidd K.K.
        Evaluating a subset of ancestry informative SNPs for discriminating among Southwest Asian and circum-Mediterranean populations.
        Forensic Sci. Int. Genet. 2016; 23: 153-158https://doi.org/10.1016/j.fsigen.2016.04.010
        • Li C.-X.
        • Pakstis A.J.
        • Jiang L.
        • Wei Y.-L.
        • Sun Q.-F.
        • Wu H.
        • Bulbul O.
        • Wang P.
        • Kang L.-L.
        • Kidd J.R.
        • Kidd K.K.
        A panel of 74 AISNPs: improved ancestry inference within Eastern Asia.
        Forensic Sci. Int. Genet. 2016; 23: 101-110https://doi.org/10.1016/j.fsigen.2016.04.002
        • Bulbul O.
        • Filoglu G.
        • Zorlu T.
        • Altuncul H.
        • Freire-Aradas A.
        • Söchtig J.
        • Ruiz Y.
        • Klintschar M.
        • Triki-Fendri S.
        • Rebai A.
        • Phillips C.
        • Lareu M.V.
        • Carracedo Á.
        • Schneider P.M.
        Inference of biogeographical ancestry across central regions of Eurasia.
        Int. J. Legal Med. 2016; 130: 73-79https://doi.org/10.1007/s00414-015-1246-7
        • Kidd K.K.
        • Speed W.C.
        • Pakstis A.J.
        • Furtado M.R.
        • Fang R.
        • Madbouly A.
        • Maiers M.
        • Middha M.
        • Friedlaender F.R.
        • Kidd J.R.
        Progress toward an efficient panel of SNPs for ancestry inference.
        Forensic Sci. Int. Genet. 2014; 10: 23-32https://doi.org/10.1016/j.fsigen.2014.01.002
        • Phillips C.
        • Parson W.
        • Lundsberg B.
        • Santos C.
        • Freire-Aradas A.
        • Torres M.
        • Eduardoff M.
        • Børsting C.
        • Johansen P.
        • Fondevila M.
        • Morling N.
        • Schneider P.
        • EUROFORGEN-NoE Consortium Á.
        • Carracedo A.
        • Lareu M.V.
        Building a forensic ancestry panel from the ground up: the EUROFORGEN Global AIM-SNP set.
        Forensic Sci. Int. Genet. 2014; 11: 13-25https://doi.org/10.1016/j.fsigen.2014.02.012
        • Phillips C.
        • Freire Aradas A.
        • Kriegel A.K.
        • Fondevila M.
        • Bulbul O.
        • Santos C.
        • Serrulla Rech F.
        • Perez Carceles M.D.
        • Carracedo Á.
        • Schneider P.M.
        • Lareu M.V.
        Eurasiaplex: a forensic SNP assay for differentiating European and South Asian ancestries.
        Forensic Sci. Int. Genet. 2013; 7: 359-366https://doi.org/10.1016/j.fsigen.2013.02.010
        • Nievergelt C.M.
        • Maihofer A.X.
        • Shekhtman T.
        • Libiger O.
        • Wang X.
        • Kidd K.K.
        • Kidd J.R.
        Inference of human continental origin and admixture proportions using a highly discriminative ancestry informative 41-SNP panel.
        Investig. Genet. 2013; 4: 13https://doi.org/10.1186/2041-2223-4-13
        • Kidd J.R.
        • Friedlaender F.R.
        • Speed W.C.
        • Pakstis A.J.
        • De La Vega F.M.
        • Kidd K.K.
        Analyses of a set of 128 ancestry informative single-nucleotide polymorphisms in a global set of 119 population samples.
        Investig. Genet. 2011; 2: 1https://doi.org/10.1186/2041-2223-2-1
        • Kayser M.
        • de Knijff P.
        Improving human forensics through advances in genetics, genomics and molecular biology.
        Nat. Rev. Genet. 2011; 12: 179-192https://doi.org/10.1038/nrg2952
        • Kayser M.
        Forensic DNA Phenotyping: predicting human appearance from crime scene material for investigative purposes.
        Forensic Sci. Int. Genet. 2015; 18: 33-48https://doi.org/10.1016/j.fsigen.2015.02.003
        • Kayser M.
        • Schneider P.M.
        DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations.
        Forensic Sci. Int. Genet. 2009; 3: 154-161https://doi.org/10.1016/j.fsigen.2009.01.012
        • Chaitanya L.
        • Breslin K.
        • Zuñiga S.
        • Wirken L.
        • Popiech E.
        • Kukla-Bartoszek M.
        • Sijen T.
        • De Knijff P.
        • Liu F.
        • Branicki W.
        • Kayser M.
        • Walsh S.
        The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation.
        Forensic Sci. Int. Genet. 2018; 35: 123-135https://doi.org/10.1016/j.fsigen.2018.04.004
        • Walsh S.
        • Chaitanya L.
        • Clarisse L.
        • Wirken L.
        • Draus-Barini J.
        • Kovatsi L.
        • Maeda H.
        • Ishikawa T.
        • Sijen T.
        • de Knijff P.
        • Branicki W.
        • Liu F.
        • Kayser M.
        Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage.
        Forensic Sci. Int. Genet. 2014; 9: 150-161https://doi.org/10.1016/j.fsigen.2013.12.006
        • Walsh S.
        • Lindenbergh A.
        • Zuniga S.B.
        • Sijen T.
        • de Knijff P.
        • Kayser M.
        • Ballantyne K.N.
        Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence.
        Forensic Sci. Int. Genet. 2011; 5: 464-471https://doi.org/10.1016/j.fsigen.2010.09.008
        • Ruiz Y.
        • Phillips C.
        • Gomez-Tato A.
        • Alvarez-Dios J.
        • Casares de Cal M.
        • Cruz R.
        • Maroñas O.
        • Söchtig J.
        • Fondevila M.
        • Rodriguez-Cid M.J.
        • Carracedo A.
        • Lareu M.V.
        Further development of forensic eye color predictive tests.
        Forensic Sci. Int. Genet. 2013; 7: 28-40https://doi.org/10.1016/j.fsigen.2012.05.009
        • Walsh S.
        • Kayser M.
        A practical guide to the HIrisPlex system: simultaneous prediction of eye and hair color from DNA.
        Methods Mol. Biol.2016: 213-231https://doi.org/10.1007/978-1-4939-3597-0_17
        • Crawford N.G.
        • Kelly D.E.
        • Hansen M.E.B.
        • Beltrame M.H.
        • Fan S.
        • Bowman S.L.
        • Jewett E.
        • Ranciaro A.
        • Thompson S.
        • Lo Y.
        • Pfeifer S.P.
        • Jensen J.D.
        • Campbell M.C.
        • Beggs W.
        • Hormozdiari F.
        • Mpoloka S.W.
        • Mokone G.G.
        • Nyambo T.
        • Meskel D.W.
        • Belay G.
        • Haut J.
        • H. NISC Comparative Sequencing Program
        • Rothschild H.
        • Zon L.
        • Zhou Y.
        • Kovacs M.A.
        • Xu M.
        • Zhang T.
        • Bishop K.
        • Sinclair J.
        • Rivas C.
        • Elliot E.
        • Choi J.
        • Li S.A.
        • Hicks B.
        • Burgess S.
        • Abnet C.
        • Watkins-Chow D.E.
        • Oceana E.
        • Song Y.S.
        • Eskin E.
        • Brown K.M.
        • Marks M.S.
        • Loftus S.K.
        • Pavan W.J.
        • Yeager M.
        • Chanock S.
        • Tishkoff S.A.
        Loci associated with skin pigmentation identified in African populations.
        Science. 2017; 358: eaan8433https://doi.org/10.1126/science.aan8433
        • Walsh S.
        • Liu F.
        • Wollstein A.
        • Kovatsi L.
        • Ralf A.
        • Kosiniak-Kamysz A.
        • Branicki W.
        • Kayser M.
        The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA.
        Forensic Sci. Int. Genet. 2013; 7: 98-115https://doi.org/10.1016/j.fsigen.2012.07.005
        • Westen A.A.
        • Matai A.S.
        • Laros J.F.J.
        • Meiland H.C.
        • Jasper M.
        • de Leeuw W.J.F.
        • de Knijff P.
        • Sijen T.
        Tri-allelic SNP markers enable analysis of mixed and degraded DNA samples.
        Forensic Sci. Int. Genet. 2009; 3: 233-241https://doi.org/10.1016/j.fsigen.2009.02.003
        • Phillips C.
        • Amigo J.
        • Carracedo Á.
        • Lareu M.V.
        Tetra-allelic SNPs: informative forensic markers compiled from public whole-genome sequence data.
        Forensic Sci. Int. Genet. 2015; 19: 100-106https://doi.org/10.1016/j.fsigen.2015.06.011
        • Cherni L.
        • Pakstis A.J.
        • Boussetta S.
        • Elkamel S.
        • Frigi S.
        • Khodjet-El-Khil H.
        • Barton A.
        • Haigh E.
        • Speed W.C.
        • Ben Ammar Elgaaied A.
        • Kidd J.R.
        • Kidd K.K.
        Genetic variation in Tunisia in the context of human diversity worldwide.
        Am. J. Phys. Anthropol. 2016; 161: 62-71https://doi.org/10.1002/ajpa.23008
        • Brissenden J.E.
        • Kidd J.R.
        • Evsanaa B.
        • Togtokh A.J.
        • Pakstis A.J.
        • Friedlaender F.
        • Kidd K.K.
        • Roscoe J.M.
        Mongolians in the genetic landscape of Central Asia: exploring the genetic relations among mongolians and other world populations.
        Hum. Biol. 2015; 87: 73-91https://doi.org/10.13110/humanbiology.87.2.0005
        • Tishkoff S.A.
        • Goldman A.
        • Calafell F.
        • Speed W.C.
        • Deinard A.S.
        • Bonne-Tamir B.
        • Kidd J.R.
        • Pakstis A.J.
        • Jenkins T.
        • Kidd K.K.
        A global haplotype analysis of the myotonic dystrophy locus: implications for the evolution of modern humans and for the origin of myotonic dystrophy mutations.
        Am. J. Hum. Genet. 1998; 62: 1389-1402https://doi.org/10.1086/301861
        • Tishkoff S.A.
        • Dietzsch E.
        • Speed W.
        • Pakstis A.J.
        • Kidd J.R.
        • Cheung K.
        • Bonné-Tamir B.
        • Santachiara-Benerecetti A.S.
        • Moral P.
        • Krings M.
        Global patterns of linkage disequilibrium at the CD4 locus and modern human origins.
        Science. 1996; 271 (Accessed 19 April 2018): 1380-1387
        • Li H.
        • Gu S.
        • Han Y.
        • Xu Z.
        • Pakstis A.J.
        • Jin L.
        • Kidd J.R.
        • Kidd K.K.
        Diversification of the ADH1B gene during expansion of modern humans.
        Ann. Hum. Genet. 2011; 75: 497-507https://doi.org/10.1111/j.1469-1809.2011.00651.x
        • Butler J.M.
        • Budowle B.
        • Gill P.
        • Kidd K.K.
        • Phillips C.
        • Schneider P.M.
        • Vallone P.M.
        • Morling N.
        Report on ISFG SNP Panel Discussion.
        Forensic Sci. Int. Genet. Suppl. Ser. (Progress in Forensic Genetics 12). 2008; 1: 471-472https://doi.org/10.1016/j.fsigss.2007.10.159
        • Kidd K.K.
        • Pakstis A.J.
        • Speed W.C.
        • Lagace R.
        • Chang J.
        • Wootton S.
        • Ihuegbu N.
        Microhaplotype loci are a powerful new type of forensic marker.
        Forensic Sci. Int. Genet. Suppl. Ser. 2013; 4: e123-e124https://doi.org/10.1016/J.FSIGSS.2013.10.063
        • Kidd K.K.
        • Pakstis A.J.
        • Speed W.C.
        • Lagacé R.
        • Chang J.
        • Wootton S.
        • Haigh E.
        • Kidd J.R.
        Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics.
        Forensic Sci. Int. Genet. 2014; 12: 215-224https://doi.org/10.1016/j.fsigen.2014.06.014
        • Kidd K.K.
        • Speed W.C.
        • Pakstis A.J.
        • Podini D.S.
        • Lagacé R.
        • Chang J.
        • Wootton S.
        • Haigh E.
        • Soundararajan U.
        Evaluating 130 microhaplotypes across a global set of 83 populations.
        Forensic Sci. Int. Genet. 2017; 29: 29-37https://doi.org/10.1016/j.fsigen.2017.03.014
        • Børsting C.
        • Morling N.
        Next generation sequencing and its applications in forensic genetics.
        Forensic Sci. Int. Genet. 2015; 18: 78-89https://doi.org/10.1016/j.fsigen.2015.02.002
        • Kidd K.K.
        • Speed W.C.
        Criteria for selecting microhaplotypes: mixture detection and deconvolution.
        Investig. Genet. 2015; 6: 1https://doi.org/10.1186/s13323-014-0018-3
        • Kidd K.K.
        • Speed W.C.
        • Wootton S.
        • Lagace R.
        • Langit R.
        • Haigh E.
        • Chang J.
        • Pakstis A.J.
        Genetic markers for massively parallel sequencing in forensics.
        Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5: e677-e679https://doi.org/10.1016/J.FSIGSS.2015.12.004
      5. dbSNP, (n.d.). https://www.ncbi.nlm.nih.gov/SNP/index.html.

      6. STRBase, (n.d.). https://strbase.nist.gov/ (Accessed 23 April 2018).

        • Osier M.V.
        • Cheung K.H.
        • Kidd J.R.
        • Pakstis A.J.
        • Miller P.L.
        • Kidd K.K.
        ALFRED: an allele frequency database for diverse populations and DNA polymorphisms--an update.
        Nucleic Acids Res. 2001; 29 (accessed March 26, 2018): 317-319
        • Osier M.V.
        • Cheung K.-H.
        • Kidd J.R.
        • Pakstis A.J.
        • Miller P.L.
        • Kidd K.K.
        ALFRED: an allele frequency database for anthropology.
        Am. J. Phys. Anthropol. 2002; 119: 77-83https://doi.org/10.1002/ajpa.10094
        • Rajeevan H.
        • Soundararajan U.
        • Kidd J.R.
        • Pakstis A.J.
        • Kidd K.K.
        ALFRED: an allele frequency resource for research and teaching.
        Nucleic Acids Res. 2012; 40: D1010-D1015https://doi.org/10.1093/nar/gkr924
      7. ALFRED: allele frequency database, (n.d.). https://alfred.med.yale.edu/alfred/ALFREDpreview.asp (Accessed 23 April 2018).

        • Rajeevan H.
        • Soundararajan U.
        • Pakstis A.J.
        • Kidd K.K.
        Introducing the forensic research/reference on genetics knowledge base, FROG-kb.
        Investig. Genet. 2012; 3: 18https://doi.org/10.1186/2041-2223-3-18
      8. FROG-kb, (n.d.). http://frog.med.yale.edu/FrogKB/ (Accessed 23 April 2018).

        • Stephens M.
        • Smith N.J.
        • Donnelly P.
        A new statistical method for haplotype reconstruction from population data.
        Am. J. Hum. Genet. 2001; 68: 978-989https://doi.org/10.1086/319501
        • Stephens M.
        • Donnelly P.
        A comparison of bayesian methods for haplotype reconstruction from population genotype data.
        Am. J. Hum. Genet. 2003; 73: 1162-1169https://doi.org/10.1086/379378
        • Marchini J.
        • Cutler D.
        • Patterson N.
        • Stephens M.
        • Eskin E.
        • Halperin E.
        • Lin S.
        • Qin Z.S.
        • Munro H.M.
        • Abecasis G.R.
        • Donnelly P.
        International HapMap Consortium, A comparison of phasing algorithms for trios and unrelated individuals.
        Am. J. Hum. Genet. 2006; 78: 437-450https://doi.org/10.1086/500808
        • Turchi C.
        • Pesaresi M.
        • Tagliabracci A.
        A microhaplotypes panel for forensic genetics using massive parallel sequencing.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e117-e118https://doi.org/10.1016/J.FSIGSS.2017.09.035
        • Zhu J.
        • Chen P.
        • Qu S.
        • Wang H.
        • Chen D.
        • Liang W.
        • Zhang L.
        Genotyping microhaplotype markers through massively parallel sequencing.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e314-e316https://doi.org/10.1016/J.FSIGSS.2017.09.128
        • Wang H.
        • Zhu J.
        • Zhou N.
        • Jiang Y.
        • Wang L.
        • He W.
        • Peng D.
        • Su Q.
        • Mao J.
        • Chen D.
        • Liang W.
        • Zhang L.
        NGS technology makes microhaplotype a potential forensic marker.
        Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5: e233-e234https://doi.org/10.1016/J.FSIGSS.2015.09.093
        • Pu Y.
        • Chen P.
        • Zhu J.
        • Jiang Y.
        • Li Q.
        • Feng T.
        • Iiang W.
        • Zhang L.
        Microhaplotype: ability of personal identification and being ancestry informative marker.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e442-e444https://doi.org/10.1016/J.FSIGSS.2017.09.144
      9. HUGO Gene Nomenclature Committee, (n.d.). http://www.genenames.org/ (Accessed 1 June 2018).

        • Kidd K.K.
        Proposed nomenclature for microhaplotypes.
        Hum. Genomics. 2016; 10: 16https://doi.org/10.1186/s40246-016-0078-y
        • Kidd K.K.
        • Bowcock A.M.
        • Pearson P.L.
        • Schmidtke J.
        • Willard H.F.
        • Track R.K.
        • Ricciuti F.
        Report of the committee on human gene mapping by recombinant DNA techniques.
        Cytogenet. Cell Genet. 1988; 49: 132-218https://doi.org/10.1159/000132664
        • Chen P.
        • Yin C.
        • Li Z.
        • Pu Y.
        • Yu Y.
        • Zhao P.
        • Chen D.
        • Liang W.
        • Zhang L.
        • Chen F.
        Evaluation of the Microhaplotypes panel for DNA mixture analyses.
        Forensic Sci. Int. Genet. 2018; 35: 149-155https://doi.org/10.1016/j.fsigen.2018.05.003
        • Chen P.
        • Zhu W.
        • Tong F.
        • Pu Y.
        • Yu Y.
        • Huang S.
        • Li Z.
        • Zhang L.
        • Liang W.
        • Chen F.
        Identifying novel microhaplotypes for ancestry inference.
        Int. J. Legal Med. 2018; https://doi.org/10.1007/s00414-018-1881-x
        • van der Gaag K.J.
        • de Leeuw R.H.
        • Laros J.F.J.
        • den Dunnen J.T.
        • de Knijff P.
        Short hypervariable microhaplotypes: a novel set of very short high discriminating power loci without stutter artefacts.
        Forensic Sci. Int. Genet. 2018; 35: 169-175https://doi.org/10.1016/j.fsigen.2018.05.008
        • Rosenberg N.A.
        • Li L.M.
        • Ward R.
        • Pritchard J.K.
        Informativeness of genetic markers for inference of ancestry.
        Am. J. Hum. Genet. 2003; 73: 1402-1422https://doi.org/10.1086/380416
        • Schmid C.W.
        • Deininger P.L.
        Sequence organization of the human genome.
        Cell. 1975; 6: 345-358https://doi.org/10.1016/0092-8674(75)90184-1
        • Batzer M.A.
        • Deininger P.L.
        Alu repeats and human genomic diversity.
        Nat. Rev. Genet. 2002; 3: 370https://doi.org/10.1038/nrg798
        • Alkan C.
        • Coe B.P.
        • Eichler E.E.
        Genome structural variation discovery and genotyping.
        Nat. Rev. Genet. 2011; 12: 363https://doi.org/10.1038/nrg2958
        • Bulbul O.
        • Pakstis A.J.
        • Soundararajan U.
        • Gurkan C.
        • Brissenden J.E.
        • Roscoe J.M.
        • Evsanaa B.
        • Togtokh A.
        • Paschou P.
        • Grigorenko E.L.
        • Gurwitz D.
        • Wootton S.
        • Lagace R.
        • Chang J.
        • Speed W.C.
        • Kidd K.K.
        Ancestry inference of 96 population samples using microhaplotypes.
        Int. J. Legal Med. 2017; 132: 703-711https://doi.org/10.1007/s00414-017-1748-6
        • Li J.Z.
        • Absher D.M.
        • Tang H.
        • Southwick A.M.
        • Casto A.M.
        • Ramachandran S.
        • Cann H.M.
        • Barsh G.S.
        • Feldman M.
        • Cavalli-Sforza L.L.
        • Myers R.M.
        Worldwide human relationships inferred from genome-wide patterns of variation.
        Science. 2008; 319: 1100-1104https://doi.org/10.1126/science.1153717
        • Gettings K.B.
        • Kiesler K.M.
        • Vallone P.M.
        Performance of a next generation sequencing SNP assay on degraded DNA.
        Forensic Sci. Int. Genet. 2015; 19: 1-9https://doi.org/10.1016/j.fsigen.2015.04.010
        • Daniel R.
        • Santos C.
        • Phillips C.
        • Fondevila M.
        • van Oorschot R.A.H.
        • Carracedo Á.
        • Lareu M.V.
        • McNevin D.
        A SNaPshot of next generation sequencing for forensic SNP analysis.
        Forensic Sci. Int. Genet. 2015; 14: 50-60https://doi.org/10.1016/j.fsigen.2014.08.013
        • Gettings K.B.
        • Kiesler K.M.
        • Faith S.A.
        • Montano E.
        • Baker C.H.
        • Young B.A.
        • Guerrieri R.A.
        • Vallone P.M.
        Sequence variation of 22 autosomal STR loci detected by next generation sequencing.
        Forensic Sci. Int. Genet. 2016; 21: 15-21https://doi.org/10.1016/j.fsigen.2015.11.005
        • Ku C.-S.
        • Loy E.Y.
        • Pawitan Y.
        • Chia K.-S.
        Next generation sequencing technologies and their applications.
        ELS, American Cancer Society. 2010https://doi.org/10.1002/9780470015902.a0022508
        • Aponte R.A.
        • Gettings K.B.
        • Dueller D.L.
        • Coble M.D.
        • Vallone P.M.
        Sequence-based analysis of stutter at STR loci: characterization and utility.
        Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5: e456-e458https://doi.org/10.1016/J.FSIGSS.2015.09.181
        • Fraser A.S.
        An introduction to population genetic theory. By J. F. Crow and M. Kimura. Harper and Row, New York. 656 pp. 1970.
        Teratology. 1972; 5: 386-387https://doi.org/10.1002/tera.1420050318
        • Pritchard J.K.
        • Stephens M.
        • Donnelly P.
        Inference of population structure using multilocus genotype data.
        Genetics. 2000; 155 (Accessed 20 April 2018): 945-959
        • Porras-Hurtado L.
        • Ruiz Y.
        • Santos C.
        • Phillips C.
        • Carracedo Á.
        • Lareu M.V.
        An overview of STRUCTURE: applications, parameter settings, and supporting software.
        Front. Genet. 2013; 4: 98https://doi.org/10.3389/fgene.2013.00098
        • Santos C.
        • Phillips C.
        • Gomez-Tato A.
        • Alvarez-Dios J.
        • Carracedo Á.
        • Lareu M.V.
        Inference of ancestry in forensic analysis II: analysis of genetic data.
        Methods Mol. Biol.2016: 255-285https://doi.org/10.1007/978-1-4939-3597-0_19
        • Price A.L.
        • Patterson N.J.
        • Plenge R.M.
        • Weinblatt M.E.
        • Shadick N.A.
        • Reich D.
        Principal components analysis corrects for stratification in genome-wide association studies.
        Nat. Genet. 2006; 38: 904-909https://doi.org/10.1038/ng1847
      10. J. Edward Jackson, N. York Chichester Brisbane Toronto, A User’s Guide To Principal Components, (n.d.). https://pdfs.semanticscholar.org/70a9/769e8027b48bce5a9ce3a82d0ce88e0f0730.pdf (Accessed 20 April 2018).

      11. K.K. Kidd, A.J. Pakstis, W.C. Speed, R. Lagace, S. Wootton, J. Chang, Selecting microhaplotypes optimized for different purposes, Electrophoresis. 2018 (n.d.). doi:10.1002/elps.201800092.

        • Hiroaki N.
        • Koji F.
        • Tetsushi K.
        • Kazumasa S.
        • Hiroaki N.
        • Kazuyuki S.
        Approaches for identifying multiple-SNP haplotype blocks for use in human identification.
        Leg. Med. (Tokyo). 2015; 17: 415-420https://doi.org/10.1016/j.legalmed.2015.06.003
        • Bennett L.D.
        • Long K.E.
        • Walter R.
        • Wootton S.C.
        • Chang C.-W.
        • Legace R.
        • Kidd K.K.
        • Podini D.S.
        The use of microhaplotypes in the analysis and deconvolution of mixed DNA.
        Samples. 2017; 510 (Accessed 12 January 2018)
        • Oldoni F.
        • Hart R.
        • Long K.
        • Maddela K.
        • Cisana S.
        • Schanfield M.
        • Wootton S.
        • Chang J.
        • Lagace R.
        • Hasegawa R.
        • Kidd K.
        • Podini D.
        Microhaplotypes for ancestry prediction.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: 513-515https://doi.org/10.1016/j.fsigss.2017.09.209
        • Voskoboinik L.
        • Motro U.
        • Darvasi A.
        Facilitating complex DNA mixture interpretation by sequencing highly polymorphic haplotypes.
        Forensic Sci. Int. Genet. 2018; 35: 136-140https://doi.org/10.1016/j.fsigen.2018.05.001
        • Pakstis A.J.
        • Speed W.C.
        • Kidd J.R.
        • Kidd K.K.
        Candidate SNPs for a universal individual identification panel.
        Hum. Genet. 2007; 121: 305-317https://doi.org/10.1007/s00439-007-0342-2
        • Bose N.
        • Carlberg K.
        • Sensabaugh G.
        • Erlich H.
        • Calloway C.
        Target capture enrichment of nuclear SNP markers for massively parallel sequencing of degraded and mixed samples.
        Forensic Sci. Int. Genet. 2018; 34: 186-196https://doi.org/10.1016/j.fsigen.2018.01.010
        • Weir B.S.
        • Anderson A.D.
        • Hepler A.B.
        Genetic relatedness analysis: modern data and new challenges.
        Nat. Rev. Genet. 2006; 7: 771-780https://doi.org/10.1038/nrg1960
        • Thiede C.
        • Florek M.
        • Bornhäuser M.
        • Ritter M.
        • Mohr B.
        • Brendel C.
        • Ehninger G.
        • Neubauer A.
        Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection.
        Bone Marrow Transplant. 1999; 23: 1055https://doi.org/10.1038/sj.bmt.1701779
        • Schichman S.A.
        • Suess P.
        • Vertino A.M.
        • Gray P.S.
        Comparison of short tandem repeat and variable number tandem repeat genetic markers for quantitative determination of allogeneic bone marrow transplant engraftment.
        Bone Marrow Transplant. 2002; 29: 243https://doi.org/10.1038/sj.bmt.1703360
        • Thiede C.
        • Bornhäuser M.
        • Oelschlägel U.
        • Brendel C.
        • Leo R.
        • Daxberger H.
        • Mohr B.
        • Florek M.
        • Kroschinsky F.
        • Geissler G.
        • Naumann R.
        • Ritter M.
        • Prange-Krex G.
        • Lion T.
        • Neubauer A.
        • Ehninger G.
        Sequential monitoring of chimerism and detection of minimal residual disease after allogeneic blood stem cell transplantation (BSCT) using multiplex PCR amplification of short tandem repeat-markers.
        Leukemia. 2001; 15: 293https://doi.org/10.1038/sj.leu.2401953
        • Debeljak M.
        • Freed D.N.
        • Welch J.A.
        • Haley L.
        • Beierl K.
        • Iglehart B.S.
        • Pallavajjala A.
        • Gocke C.D.
        • Leffell M.S.
        • Lin M.-T.
        • Pevsner J.
        • Wheelan S.J.
        • Eshleman J.R.
        Haplotype counting by next-generation sequencing for ultrasensitive human DNA detection.
        J. Mol. Diagn. 2014; 16: 495-503https://doi.org/10.1016/j.jmoldx.2014.04.003
        • Debeljak M.
        • Mocci E.
        • Morrison M.C.
        • Pallavajjalla A.
        • Beierl K.
        • Amiel M.
        • Noë M.
        • Wood L.D.
        • Lin M.-T.
        • Gocke C.D.
        • Klein A.P.
        • Fuchs E.J.
        • Jones R.J.
        • Eshleman J.R.
        Haplotype counting for sensitive chimerism testing: potential for early leukemia relapse detection.
        J. Mol. Diagn. 2017; 19: 427-436https://doi.org/10.1016/j.jmoldx.2017.01.005
        • Ning- Q.
        • Yifan X.
        • Haiyan L.
        • Hao- L.
        • Shaobin L.
        • Erwen H.
        • Jun- G.
        • Fang- C.
        • Yanwei S.
        • Xueling O.
        Noninvasive prenatal paternity testing using targeted massively parallel sequencing.
        Transfusion. 2018; 2018: 1792-1799https://doi.org/10.1111/trf.14577
        • Baetscher D.S.
        • Clemento A.J.
        • Ng T.C.
        • Anderson E.C.
        • Garza J.C.
        Microhaplotypes provide increased power from short-read DNA sequences for relationship inference.
        Mol. Ecol. Resour. 2018; 18: 296-305https://doi.org/10.1111/1755-0998.12737
      12. E.P. Palkovacs, K. Reid, J.C. Garza, S. Gephard, D.M. Post, Determining the Effects of Landlocked Alewives on Anadromous Alewife Restoration, (n.d.). https://rcngrants.org/sites/default/files/final_reports/RCN 2015-1 Final Report.pdf (Accessed 10 July 2018).