Advertisement

DNA transfer in forensic science: A review

  • Roland A.H. van Oorschot
    Correspondence
    Corresponding author at: Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, 31 Forensic Drive, Macleod 3085, Australia.
    Affiliations
    Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, 31 Forensic Drive, Macleod 3085, Australia

    School of Molecular Sciences, La Trobe University, Bundoora 3086, Australia
    Search for articles by this author
  • Bianca Szkuta
    Affiliations
    Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, 31 Forensic Drive, Macleod 3085, Australia

    School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong 3220, Australia
    Search for articles by this author
  • Georgina E. Meakin
    Affiliations
    UCL Centre for the Forensic Sciences, 35 Tavistock Square, London, WC1H 9EZ, UK

    UCL Department of Security and Crime Science, 35 Tavistock Square, London, WC1H 9EZ, UK
    Search for articles by this author
  • Bas Kokshoorn
    Affiliations
    Division Biological Traces, Netherlands Forensic Institute, P.O. Box 24044 2490 AA, The Hague, The Netherlands
    Search for articles by this author
  • Mariya Goray
    Affiliations
    Biometrics Division, Victoria Police Forensic Services Department, 31 Forensic Drive, Macleod 3085, Australia
    Search for articles by this author
Published:October 25, 2018DOI:https://doi.org/10.1016/j.fsigen.2018.10.014

      Highlights

      • Understanding the variables impacting DNA transfer is highly relevant.
      • DNA transfer awareness is required to limit contamination risk.
      • Dedicated training is required for experts providing opinion on DNA transfer.
      • More research is required to generate probability estimates for more situations.

      Abstract

      Understanding the variables impacting DNA transfer, persistence, prevalence and recovery (DNA-TPPR) has become increasingly relevant in investigations of criminal activities to provide opinion on how the DNA of a person of interest became present within the sample collected. This review considers our current knowledge regarding DNA-TPPR to assist casework investigations of criminal activities. There is a growing amount of information available on DNA-TPPR to inform the relative probabilities of the evidence given alternative scenarios relating to the presence or absence of DNA from a specific person in a collected sample of interest. This information should be used where relevant. However, far more research is still required to better understand the variables impacting DNA-TPPR and to generate more accurate probability estimates of generating particular types of profiles in more casework relevant situations. This review explores means of achieving this. It also notes the need for all those interacting with an item of interest to have an awareness of DNA transfer possibilities post criminal activity, to limit the risk of contamination or loss of DNA.
      Appropriately trained forensic practitioners are best placed to provide opinion and guidance on the interpretation of profiles at the activity level. However, those requested to provide expert opinion on DNA-related activity level issues are often insufficiently trained to do so. We advocate recognition of DNA activity associated expertise to be distinct from expertise associated with the identification of individuals. This is to be supported by dedicated training, competency testing, authorisation, and regular fit for purpose proficiency testing.
      The possibilities for experts to report on activity-related issues will increase as our knowledge increases through further research, access to relevant data is enhanced, and tools to assist interpretations are better exploited. Improvement opportunities will be achieved sooner, if more laboratories and agencies accept the need to invest in these aspects as well as the training of practitioners.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cook R.
        • Evett I.W.
        • Jackson G.
        • Jones P.J.
        • Lambert J.A.
        A hierarchy of propositions: deciding which level to address in casework.
        Sci. Justice. 1998; 38: 231-239
        • Taylor D.
        • Kokshoorn B.
        • Biedermann A.
        Evaluation of forensic genetics findings given activity level propositions: a review.
        Forensic Sci. Int. Genet. 2018; 36: 34-49
        • Locard E.
        L’enquête criminelle et les méthodes scientifiques.
        Ernest Flammarion, Paris1920
        • Inman K.
        • Rudin N.
        Principles and Practice of Criminalistics: The Profession of Forensic Science.
        CRC Press, Boca Raton, Florida2000
        • Jeffreys A.J.
        • Wilson V.
        • Thein S.L.
        Hypervariable’ minisatellite’ regions in human DNA.
        Nature. 1985; 314: 67-73
        • Gill P.
        • Jeffreys A.J.
        • Werrett D.J.
        Forensic application of DNA `fingerprints’.
        Nature. 1985; 318: 577-579
        • van Oorschot R.A.H.
        • Ballantyne K.N.
        • Mitchell J.R.
        Forensic trace DNA: a review.
        Investig. Genet. 2010; 1: 1-17
        • Børsting C.
        • Morling N.
        Next generation sequencing and its applications in forensic genetics.
        Forensic Sci. Int. Genet. 2015; 18: 78-89
        • Butler J.M.
        Advanced Topics in Forensic DNA Typing: Methodology.
        Academic Press, San Diego, CA2012
        • Gill P.
        • Haned H.
        • Bleka O.
        • Hansson O.
        • Dørum G.
        • Egeland T.
        Genotyping and interpretation of STR-DNA: low-template, mixtures and database matches - twenty years of research and development.
        Forensic Sci. Int. Genet. 2015; 18: 100-117
        • Butler J.M.
        U.S. Initiatives to strengthen forensic science & international standards in forensic DNA.
        Forensic Sci. Int. Genet. 2015; 18: 4-20
        • Peerenboom E.
        Central criminal DNA database created in Germany.
        Nat. Biotechnol. 1998; 16: 510-511
        • Hoyle R.
        The FBI’s national DNA database.
        Nat. Biotechnol. 1998; 16: 987
        • Mapes A.A.
        • Kloosterman A.D.
        • de Poot C.J.
        DNA in the criminal justice system: the DNA success story in perspective.
        J. Forensic Sci. 2015; 60: 851-856
        • Bond J.W.
        • Hammond C.
        The value of DNA material recovered from crime scenes.
        J. Forensic Sci. 2008; 53: 797-801
        • Baechler S.
        Study of criteria influencing the success rate of DNA swabs in operational conditions: a contribution to an evidence-based approach to crime scene investigation and triage.
        Forensic Sci. Int. Genet. 2016; 20: 130-139
        • Walsh S.J.
        • Moss D.S.
        • Kliem C.
        • Vintiner G.M.
        The collation of forensic DNA case data into a multi-dimensional intelligence database.
        Sci. Justice. 2002; 42: 205-214
        • Wickenheiser R.A.
        Trace DNA: a review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact.
        J. Forensic Sci. 2002; 47: 442-450
        • Cardozo B.N.
        200 Exonerated, Too Many Wrongfully Convicted, Innocence Project.
        (Available at:)2007 (Accessed 11 October 2018)
        • Asplen C.H.
        The Application of DNA Technology in England and Wales.
        (Available at:)2004 (Accessed 11 October 2018)
        • Gross S.R.
        • Jacoby K.
        • Matheson D.J.
        • Montgomery N.
        • Patil S.
        Exonerations in the United States 1989 through 2003.
        J. Crim. Law Criminol. 2005; 95: 523-560
        • Biesecker L.G.
        • et al.
        DNA identifications after the 9/11 world trade center attack.
        Science. 2005; 310: 1122-1123
        • Hartman D.
        • Drummer O.
        • Eckhoff C.
        • Scheffer J.W.
        • Stringer P.
        The contribution of DNA to the disaster victim identification (DVI) effort.
        Forensic Sci. Int. 2011; 205: 52-58
        • Alonso A.
        • et al.
        Challenges of DNA profiling in mass disaster investigations.
        Croat. Med. J. 2005; 46: 540-548
        • Clayton T.M.
        • Whitaker J.P.
        • Maguire C.N.
        Identification of bodies from the scene of a mass disaster using DNA amplification of short tandem repeat (STR) loci.
        Forensic Sci. Int. 1995; 76: 7-15
        • van Oorschot R.A.H.
        • Jones M.K.
        DNA fingerprints from fingerprints.
        Nature. 1997; 387: 767
        • Mapes A.A.
        • Kloosterman A.D.
        • van Marion V.
        • de Poot C.J.
        Knowledge on DNA success rates to optimize the DNA analysis process: from crime scene to laboratory.
        J. Forensic Sci. 2016; 61: 1055-1061
        • Raymond J.J.
        • Walsh S.J.
        • van Oorschot R.A.H.
        • Gunn P.R.
        • Roux C.
        Trace DNA: an underutilized resource or Pandora’s box? A review of the use of trace DNA analysis in the investigation of volume crime.
        J. Forensic Identification. 2004; 54: 668-686
        • Harbison S.-A.
        • Fallow M.
        • Bushell D.
        An analysis of the success rate of 908 trace DNA samples submitted to the Crime Sample Database Unit in New Zealand.
        Aust. J. Forensic Sci. 2008; 40: 49-53
        • Taroni F.
        • Biedermann A.
        • Vuille J.
        • Morling N.
        Whose DNA is this? How relevant a question? (a note for forensic scientists).
        Forensic Sci. Int. Genet. 2013; 7: 467-470
        • Ladd C.
        • Adamowicz M.S.
        • Bourke M.T.
        • Scherczinger C.A.
        • Lee H.C.
        A systematic analysis of secondary DNA transfer.
        J. Forensic Sci. 1999; 44: 1270-1272
        • Lowe A.
        • Murray C.
        • Whitaker J.
        • Tully G.
        • Gill P.
        The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces.
        Forensic Sci. Int. 2002; 129: 25-34
        • Phipps M.
        • Petricevic S.
        The tendency of individuals to transfer DNA to handled items.
        Forensic Sci. Int. 2007; 168: 162-168
        • Farmen R.K.
        • Jaghø R.
        • Cortez P.
        • Frøyland E.S.
        Assessment of individual shedder status and implication for secondary DNA transfer.
        Forensic Sci. Int. Genet. Suppl. Ser. 2008; 1: 415-417
        • van Oorschot R.A.H.
        • Phelan D.G.
        • Furlong S.
        • Scarfo G.M.
        • Holding N.L.
        • Cummins M.J.
        Are you collecting all the available DNA from touched objects?.
        Int. Congr. Ser. 2003; 1239: 803-807
        • Raymond J.J.
        • van Oorschot R.A.H.
        • Gunn P.R.
        • Walsh S.J.
        • Roux C.
        Trace evidence characteristics of DNA: a preliminary investigation of the persistence of DNA at crime scenes.
        Forensic Sci. Int. Genet. 2009; 4: 26-33
        • Goray M.
        • Mitchell R.J.
        • van Oorschot R.A.H.
        Investigation of secondary DNA transfer of skin cells under controlled test conditions.
        Leg. Med. 2010; 12: 117-120
        • Goray M.
        • Eken E.
        • Mitchell R.J.
        • van Oorschot R.A.H.
        Secondary DNA transfer of biological substances under varying test conditions.
        Forensic Sci. Int. Genet. 2010; 4: 62-67
        • Meakin G.
        • Jamieson A.
        DNA transfer: review and implications for casework.
        Forensic Sci. Int. Genet. 2013; 7: 434-443
        • Casey D.G.
        • Clayson N.
        • Jones S.
        • Lewis J.
        • Boyce M.
        • Fraser I.
        • Kennedy F.
        • Alexender K.
        A response to Meakin and Jamieson DNA transfer: review and implications for casework.
        Forensic Sci. Int. Genet. 2016; 21: 117-118
        • Meakin G.E.
        • Jamieson A.
        A response to a response to Meakin and Jamieson DNA transfer: review and implications for casework.
        Forensic Sci. Int. Genet. 2016; 22: e5-e6
        • Gill P.
        Misleading DNA Evidence: Reasons for Miscarriages of Justice.
        Elsevier, 2014
        • Gill P.
        Analysis and implications of the miscarriages of justice of Amanda Knox and Raffaele Sollecito.
        Forensic Sci. Int. Genet. 2016; 23: 9-18
        • Willis S.M.
        • et al.
        ENFSI Guideline for Evaluative Reporting in Forensic Science, European Network of Forensic Science Institutes.
        (Available at:)2015 (Accessed 8 August 2017)
        • Taylor D.
        • Biedermann A.
        • Hicks T.
        • Champod C.
        A template for constructing Bayesian networks in forensic biology cases when considering activity level propositions.
        Forensic Sci. Int. Genet. 2018; 33: 136-146
        • Champod C.
        DNA transfer: informed judgment or mere guesswork?.
        Front. Genet. 2013; 4
        • Taylor D.
        • Biedermann A.
        • Samie L.
        • Pun K.M.
        • Hicks T.
        • Champod C.
        Helping to distinguish primary from secondary transfer events for trace DNA.
        Forensic Sci. Int. Genet. 2017; 28: 155-177
        • Goray M.
        • Mitchell R.J.
        • van Oorschot R.A.H.
        Evaluation of multiple transfer of DNA using mock case scenarios.
        Leg. Med. 2012; 14: 40-46
        • Lehmann V.J.
        • Mitchell R.J.
        • Ballantyne K.N.
        • van Oorschot R.A.H.
        Following the transfer of DNA: how far can it go?.
        Forensic Sci. Int. Genet. Suppl. Ser. 2013; 4: e53-e54
        • Buckingham A.K.
        • Harvey M.L.
        • van Oorschot R.A.H.
        The origin of unknown source DNA from touched objects.
        Forensic Sci. Int. Genet. 2016; 25: 26-33
        • Meakin G.E.
        • Butcher E.V.
        • van Oorschot R.A.H.
        • Morgan R.M.
        Trace DNA evidence dynamics: an investigation into the deposition and persistence of directly- and indirectly-transferred DNA on regularly-used knives.
        Forensic Sci. Int. Genet. 2017; 29: 38-47
        • Szkuta B.
        • Ballantyne K.N.
        • van Oorschot R.A.H.
        Transfer and persistence of DNA on the hands and the influence of activities performed.
        Forensic Sci. Int. Genet. 2017; 28: 10-20
        • Szkuta B.
        • Ballantyne K.N.
        • Kokshoorn B.
        • van Oorschot R.A.H.
        Transfer and persistence of non-self DNA on hands over time: using empirical data to evaluate DNA evidence given activity level propositions.
        Forensic Sci. Int. Genet. 2018; 33: 84-97
        • Cale C.M.
        • Earll M.E.
        • Latham K.E.
        • Bush G.L.
        Could secondary DNA transfer falsely place someone at the scene of a crime?.
        J. Forensic Sci. 2016; 61: 196-203
        • Goray M.
        • van Oorschot R.A.H.
        • Mitchell J.R.
        DNA transfer within forensic exhibit packaging: potential for DNA loss and relocation.
        Forensic Sci. Int. Genet. 2012; 6: 158-166
        • Fonneløp A.E.
        • Johannessen H.
        • Egeland T.
        • Gill P.
        Contamination during criminal investigation: detecting police contamination and secondary DNA transfer from evidence bags.
        Forensic Sci. Int. Genet. 2016; 23: 121-129
        • Szkuta B.
        • van Oorschot R.A.H.
        • Ballantyne K.N.
        DNA decontamination of fingerprint brushes.
        Forensic Sci. Int. 2017; 277: 41-50
        • Szkuta B.
        • Harvey M.L.
        • Ballantyne K.N.
        • van Oorschot R.A.H.
        DNA transfer by examination tools – a risk for forensic casework?.
        Forensic Sci. Int. Genet. 2015; 16: 246-254
        • Szkuta B.
        • Harvey M.L.
        • Ballantyne K.N.
        • van Oorschot R.A.H.
        Residual DNA on examination tools following use.
        Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5: e495-e497
        • Fonneløp A.E.
        • Egeland T.
        • Gill P.
        Secondary and subsequent DNA transfer during criminal investigation.
        Forensic Sci. Int. Genet. 2015; 17: 155-162
        • Bolivar P.-A.
        • Tracey M.
        • McCord B.
        Assessing the risk of secondary transfer via fingerprint brush contamination using enhanced sensitivity DNA analysis methods.
        J. Forensic Sci. 2016; 61: 204-211
        • van Oorschot R.A.H.
        • Treadwell S.
        • Beaurepaire J.
        • Holding N.L.
        • Mitchell R.J.
        Beware of the possibility of fingerprinting techniques transferring DNA.
        J. Forensic Sci. 2005; 50: 1-6
        • Goray M.
        • van Oorschot R.A.H.
        The complexities of DNA transfer during a social setting.
        Leg. Med. 2015; 17: 82-91
        • Fonneløp A.E.
        • Ramse M.
        • Egeland T.
        • Gill P.
        The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario.
        Forensic Sci. Int. Genet. 2017; 29: 48-60
        • Rudin N.
        • Inman K.
        The collection and preservation of physical evidence.
        An Introduction to Forensic DNA Analysis. CRC Press, Boca Raton, Florida2001: 13-17
        • Lehmann V.J.
        • Mitchell R.J.
        • Ballantyne K.N.
        • van Oorschot R.A.H.
        Following the transfer of DNA: how does the presence of background DNA affect the transfer and detection of a target source of DNA?.
        Forensic Sci. Int. Genet. 2015; 19: 68-75
        • Giannelli P.
        Legal aspects of obtaining evidence for analysis by forensic techniques.
        J. Forensic Sci. 1974; 19: 428-440
        • Balding D.J.
        • Buckleton J.
        Interpreting low template DNA profiles.
        Forensic Sci. Int. Genet. 2009; 4: 1-10
        • Budowle B.
        • Eisenberg A.J.
        • van Daal A.
        Validity of low copy number typing and applications to forensic science.
        Croat. Med. J. 2009; 50: 207-217
        • Cook O.
        • Dixon L.
        The prevalence of mixed DNA profiles in fingernail samples taken from individuals in the general population.
        Forensic Sci. Int. Genet. 2007; 1: 62-68
        • Graham E.A.M.
        • Rutty G.N.
        Investigation into “normal” background DNA on adult necks: implications for DNA profiling of manual strangulation victims.
        J. Forensic Sci. 2008; 53: 1074-1082
        • Graham E.A.M.
        • Watkins W.J.
        • Dunstan F.
        • Maguire S.
        • Nuttall D.
        • Swinfield C.E.
        • Rutty G.N.
        • Kemp A.M.
        Defining background DNA levels found on the skin of children aged 0–5 years.
        Int. J. Legal Med. 2014; 128: 251-258
        • Kokshoorn B.
        • Aarts L.H.J.
        • Ansell R.
        • Connolly E.
        • Drotz W.
        • Kloosterman A.D.
        • McKenna L.G.
        • Szkuta B.
        • van Oorschot R.A.H.
        Sharing data on DNA transfer, persistence, prevalence and recovery: arguments for harmonization and standardization.
        Forensic Sci. Int. Genet. 2018; 37: 260-269
        • Verdon T.J.
        • Mitchell R.J.
        • van Oorschot R.A.H.
        The influence of substrate on DNA transfer and extraction efficiency.
        Forensic Sci. Int. Genet. 2013; 7: 167-175
        • Daly D.J.
        • Murphy C.
        • McDermott S.D.
        The transfer of touch DNA from hands to glass, fabric and wood.
        Forensic Sci. Int. Genet. 2012; 6: 41-46
        • Helmus J.
        • Bajanowski T.
        • Poetsch M.
        DNA transfer - a never ending story. A study on scenarios involving a second person as carrier.
        Int. J. Legal Med. 2016; 130: 121-125
        • Buckingham A.K.
        • Harvey M.L.
        • van Oorschot R.A.H.
        Transfer of picked-up DNA to cotton plates.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e6-e8
        • Warshauer D.H.
        • Marshall P.
        • Kelley S.
        • King J.
        • Budowle B.
        An evaluation of the transfer of saliva-derived DNA.
        Int. J. Legal Med. 2012; 126: 851-861
        • van Oorschot R.A.H.
        • McArdle R.
        • Goodwin W.H.
        • Ballantyne K.N.
        DNA transfer: the role of temperature and drying time.
        Leg. Med. 2014; 16: 161-163
        • Laan N.
        • Smith F.
        • Nicloux C.
        • Brutin D.
        Morphology of drying blood pools.
        Forensic Sci. Int. 2016; 267: 104-109
        • Ramsthaler F.
        • Schmidt P.
        • Bux R.
        • Potente S.
        • Kaiser C.
        • Kettner M.
        Drying properties of bloodstains on common indoor surfaces.
        Int. J. Legal Med. 2012; 126: 739-746
        • van Oorschot R.A.H.
        • Glavich G.
        • Mitchell R.J.
        Persistence of DNA deposited by the original user on objects after subsequent use by a second person.
        Forensic Sci. Int. Genet. 2014; 8: 219-225
        • Wiegand P.
        • Kleiber M.
        DNA typing of epithelial cells after strangulation.
        Int. J. Legal Med. 1997; 110: 181-183
        • Rutty G.N.
        An investigation into the transference and survivability of human DNA following simulated manual strangulation with consideration of the problem of third party contamination.
        Int. J. Legal Med. 2002; 116: 170-173
        • Bright J.-A.
        • Petricevic S.F.
        Recovery of trace DNA and its application to DNA profiling of shoe insoles.
        Forensic Sci. Int. 2004; 145: 7-12
        • Petricevic S.F.
        • Bright J.-A.
        • Cockerton S.L.
        DNA profiling of trace DNA recovered from bedding.
        Forensic Sci. Int. 2006; 159: 21-26
        • Alessandrini F.
        • Cecati M.
        • Pesaresi M.
        • Turchi C.
        • Carle F.
        • Tagliabracci A.
        Fingerprints as evidence for a genetic profile: morphological study on fingerprints and analysis of exogenous and individual factors affecting DNA typing.
        J. Forensic Sci. 2003; 48: 586-592
        • Balogh M.K.
        • Burger J.
        • Bender K.
        • Schneider P.M.
        • Alt K.W.
        Fingerprints from fingerprints.
        Int. Congr. Ser. 2003; 1239: 953-957
        • Kita T.
        • Yamaguchi H.
        • Yokoyama M.
        • Tanaka T.
        • Tanaka N.
        Morphological study of fragmented DNA on touched objects.
        Forensic Sci. Int. Genet. 2008; 3: 32-36
        • Zoppis S.
        • Muciaccia B.
        • D’Alessio A.
        • Ziparo E.
        • Vecchiotti C.
        • Filippini A.
        DNA fingerprinting secondary transfer from different skin areas: morphological and genetic studies.
        Forensic Sci. Int. Genet. 2014; 11: 137-143
        • Quinones I.
        • Daniel B.
        Cell free DNA as a component of forensic evidence recovered from touched surfaces.
        Forensic Sci. Int. Genet. 2012; 6: 26-30
        • Linacre A.
        • Pekarek V.
        • Swaran Y.C.
        • Tobe S.S.
        Generation of DNA profiles from fabrics without DNA extraction.
        Forensic Sci. Int. Genet. 2010; 4: 137-141
        • Vandenberg N.
        • van Oorschot R.A.H.
        The use of Polilight® in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests.
        J. Forensic Sci. 2006; 51: 361-370
        • Finnis J.
        • Lewis J.
        • Davidson A.
        Comparison of methods for visualizing blood on dark surfaces.
        Sci. Justice. 2013; 53: 178-186
        • Sijen T.
        Molecular approaches for forensic cell type identification: on mRNA, miRNA, DNA methylation and microbial markers.
        Forensic Sci. Int. Genet. 2015; 18: 21-32
        • Virkler K.
        • Lednev I.K.
        Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene.
        Forensic Sci. Int. 2009; 188: 1-17
        • Hanson E.
        • Haas C.
        • Jucker R.
        • Ballantyne J.
        Specific and sensitive mRNA biomarkers for the identification of skin in ‘touch DNA’ evidence.
        Forensic Sci. Int. Genet. 2012; 6: 548-558
        • Haas C.
        • et al.
        RNA/DNA co-analysis from human skin and contact traces – results of a sixth collaborative EDNAP exercise.
        Forensic Sci. Int. Genet. 2015; 16: 139-147
        • van den Berge M.
        • et al.
        A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results.
        Forensic Sci. Int. Genet. 2014; 10: 40-48
        • Akutsu T.
        • Watanabe K.
        • Takamura A.
        • Sakurada K.
        Evaluation of skin- or sweat-characteristic mRNAs for inferring the human origin of touched contact traces.
        Leg. Med. 2018; 33: 36-41
        • Visser M.
        • Zubakov D.
        • Ballantyne K.N.
        • Kayser M.
        mRNA-based skin identification for forensic applications.
        Int. J. Legal Med. 2011; 125: 253-263
        • Schmedes S.E.
        • Woerner A.E.
        • Novroski N.M.M.
        • Wendt F.R.
        • King J.L.
        • Stephens K.M.
        • Budowle B.
        Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification.
        Forensic Sci. Int. Genet. 2018; 32: 50-61
        • Tims S.
        • van Wamel W.
        • Endtz H.P.
        • van Belkum A.
        • Kayser M.
        Microbial DNA fingerprinting of human fingerprints: dynamic colonization of fingertip microflora challenges human host inferences for forensic purposes.
        Int. J. Legal Med. 2010; 124: 477-481
        • van den Berge M.
        • Ozcanhan G.
        • Zijlstra S.
        • Lindenbergh A.
        • Sijen T.
        Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios.
        Forensic Sci. Int. Genet. 2016; 21: 81-89
        • Lacerenza D.
        • Aneli S.
        • Omedei M.
        • Gino S.
        • Pasino S.
        • Berchialla P.
        • Robino C.
        A molecular exploration of human DNA/RNA co-extracted from the palmar surface of the hands and fingers.
        Forensic Sci. Int. Genet. 2016; 22: 44-53
        • Reynolds K.A.
        • Boone S.A.
        • Gerba C.P.
        • Watt P.M.
        Occurrence of bacteria and biochemical markers on public surfaces.
        Int. J. Environ. Health Res. 2005; 15: 225-234
        • Lee H.C.
        • Ladd C.
        Preservation and collection of biological evidence.
        Croat. Med. J. 2001; 42: 225-228
        • Taylor D.
        • Abarno D.
        • Hicks T.
        • Champod C.
        Evaluating forensic biology results given source level propositions.
        Forensic Sci. Int. Genet. 2016; 21: 54-67
        • Taylor D.
        Probabilistically determining the cellular source of DNA derived from differential extractions in sexual assault scenarios.
        Forensic Sci. Int. Genet. 2016; 24: 124-135
        • De Wolff T.R.
        • Kal A.J.
        • Berger C.E.H.
        • Kokshoorn B.
        A probabilistic approach to body fluid typing interpretation: an exploratory study on forensic saliva testing, Law.
        Law Probab. Risk. 2015; 14: 323-339
        • de Zoete J.
        • Oosterman W.
        • Kokshoorn B.
        • Sjerps M.
        Cell type determination and association with the DNA donor.
        Forensic Sci. Int. Genet. 2016; 25: 97-111
        • de Zoete J.
        • Curran J.
        • Sjerps M.
        A probabilistic approach for the interpretation of RNA profiles as cell type evidence.
        Forensic Sci. Int. Genet. 2016; 20: 30-44
        • Goray M.
        • Fowler S.
        • Szkuta B.
        • van Oorschot R.A.H.
        Shedder status - an analysis of self and non-self DNA in multiple handprints deposited by the same individuals over time.
        Forensic Sci. Int. Genet. 2016; 23: 190-196
        • Oleiwi A.A.
        • Morris M.R.
        • Schmerer W.M.
        • Sutton R.
        The relative DNA-shedding propensity of the palm and finger surfaces.
        Sci. Justice. 2015; 55: 329-334
        • Kanokwongnuwut P.
        • Martin B.
        • Kirkbride K.P.
        • Linacre A.
        Shedding light on shedders.
        Forensic Sci. Int. Genet. 2018; 36: 20-25
        • Kamphausen T.
        • Schadendorf D.
        • Wurmb-Schwark N.
        • Bajanowski T.
        • Poetsch M.
        Good shedder or bad shedder - the influence of skin diseases on forensic DNA analysis from epithelial abrasions.
        Int. J. Legal Med. 2012; 126: 179-183
        • Manoli P.
        • Antoniou A.
        • Bashiardes E.
        • Xenophontos S.
        • Photiades M.
        • Stribley V.
        • Mylona M.
        • Demetriou C.
        • Cariolou M.A.
        Sex-specific age association with primary DNA transfer.
        Int. J. Legal Med. 2016; 130: 103-112
        • Poetsch M.
        • Bajanowski T.
        • Kamphausen T.
        Influence of an individual’s age on the amount and interpretability of DNA left on touched items.
        Int. J. Legal Med. 2013; 127: 1093-1096
        • Allen R.W.
        • Pogemiller J.
        • Joslin J.
        • Gulick M.
        • Pritchard J.
        Identification through typing of DNA recovered from touch transfer evidence: parameters affecting yield of recovered human DNA.
        J. Forensic Identification. 2008; 58: 33-41
        • Poetsch M.
        • Pfeifer M.
        • Konrad H.
        • Bajanowski T.
        • Helmus J.
        Impact of several wearers on the persistence of DNA on clothes - a study with experimental scenarios.
        Int. J. Legal Med. 2018; 132: 117-123
        • Tobias S.H.A.
        • Jacques G.S.
        • Morgan R.M.
        • Meakin G.E.
        The effect of pressure on DNA deposition by touch.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e12-e14
        • McColl D.L.
        • Harvey M.L.
        • van Oorschot R.A.H.
        DNA transfer by different parts of a hand.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e29-e31
        • Pfeifer C.M.
        • Wiegand P.
        Persistence of touch DNA on burglary-related tools.
        Int. J. Legal Med. 2017; 131: 941-953
        • Raymond J.J.
        • van Oorschot R.A.H.
        • Walsh S.J.
        • Roux C.
        • Gunn P.R.
        Trace DNA and street robbery: a criminalistic approach to DNA evidence.
        Forensic Sci. Int. Genet. Suppl. Ser. 2009; 2: 544-546
        • Breathnach M.
        • Williams L.
        • McKenna L.
        • Moore E.
        Probability of detection of DNA deposited by habitual wearer and/or the second individual who touched the garment.
        Forensic Sci. Int. Genet. 2016; 20: 53-60
        • Mapes A.A.
        DNA by the Numbers, Forensic Magazine.
        (Available at:)2015 (Accessed 8 July 2018)
        • Taylor D.
        • Abarno D.
        • Rowe E.
        • Rask-Nielsen L.
        Observations of DNA transfer within an operational forensic biology laboratory.
        Forensic Sci. Int. Genet. 2016; 23: 33-49
        • Poy A.L.
        • van Oorschot R.A.H.
        Trace DNA presence, origin, and transfer within a forensic biology laboratory and its potential effect on casework.
        J. Forensic Identification. 2006; 56: 558-576
        • Raymond J.J.
        • Walsh S.J.
        • van Oorschot R.A.H.
        • Gunn P.R.
        • Evans L.
        • Roux C.
        Assessing trace DNA evidence from a residential burglary: abundance, transfer and persistence.
        Forensic Sci. Int. Genet. Suppl. Ser. 2008; 1: 442-443
        • Peel C.
        • Gill P.
        Attribution of DNA profiles to body fluid stains.
        Int. Congr. Ser. 2004; 1261: 53-55
        • Slooten K.
        Identifying common donors in DNA mixtures, with applications to database searches.
        Forensic Sci. Int. Genet. 2017; 26: 40-47
        • Bremmer R.H.
        • de Bruin K.G.
        • van Gemert M.J.C.
        • van Leeuwen T.G.
        • Aalders M.C.G.
        Forensic quest for age determination of bloodstains.
        Forensic Sci. Int. 2012; 216: 1-11
        • Lech K.
        • Liu F.
        • Ackermann K.
        • Revell V.L.
        • Lao O.
        • Skene D.J.
        • Kayser M.
        Evaluation of mRNA markers for estimating blood deposition time: towards alibi testing from human forensic stains with rhythmic biomarkers.
        Forensic Sci. Int. Genet. 2016; 21: 119-125
        • Ackermann K.
        • Ballantyne K.N.
        • Kayser M.
        Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction.
        Int. J. Legal Med. 2010; 124: 387-395
        • Ballantyne J.
        Determination of the Age (time Since Deposition) of a Biological Stain.
        2008 (Available at: https://www.ncjrs.gov/pdffiles1/nij/grants/226811.pdf (Accessed 9 July 2018))
      1. ENFSI Scenes of Crime Working Group, Scenes of Crime Examination Best Practice Manual, European Network of Forensic Science Institutes.
        2012 (Available at: http://library.college.police.uk/docs/appref/ENFSI-BPM-v1_0.pdf (Accessed 9 July 2018))
        • van den Berge M.
        • van de Merwe L.
        • Sijen T.
        DNA transfer and cell type inference to assist activity level reporting: post-activity background samples as a control in dragging scenario.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e591-e592
        • Gill P.
        The utility of ‘substrate controls’ in relation to ‘contamination’.
        Forensic Sci. Int. 1997; 85: 105-111
        • Samie L.
        • Hicks T.
        • Castella V.
        • Taroni F.
        Stabbing simulations and DNA transfer.
        Forensic Sci. Int. Genet. 2016; 22: 73-80
        • Fonneløp A.E.
        • Johannessen H.
        • Gill P.
        Persistence and secondary transfer of DNA from previous users of equipment.
        Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5: e191-e192
        • Oldoni F.
        • Castella V.
        • Hall D.
        Shedding light on the relative DNA contribution of two persons handling the same object.
        Forensic Sci. Int. Genet. 2016; 24: 148-157
        • Polley D.
        • Mickiewicz P.
        • Vaughn M.
        • Miller T.
        • Warburton R.
        • Komonski D.
        • Kantautas C.
        • Reid B.
        • Frappier R.
        • Newman J.
        An investigation of DNA recovery from firearms and cartridge cases.
        Can. Soc. Forensic Sci. J. 2006; 39: 217-228
        • Steensma K.
        • Ansell R.
        • Clarisse L.
        • Connolly E.
        • Kloosterman A.D.
        • McKenna L.G.
        • van Oorschot R.A.H.
        • Szkuta B.
        • Kokshoorn B.
        An inter-laboratory comparison study on transfer, persistence and recovery of DNA from cable ties.
        Forensic Sci. Int. Genet. 2017; 31: 95-104
        • Goray M.
        • Ballantyne K.N.
        • Szkuta B.
        • van Oorschot R.A.H.
        Could secondary DNA transfer falsely place someone at the scene of a crime?.
        J. Forensic Sci. 2016; 61 (Comments on C.M. Cale, M.E. Earll, K.E. Latham, G.L. Bush) (Journal of Forensic Sciences 61 (5) (2016) pp. 1396–1398): 196-203
        • Kokshoorn B.
        • Aarts B.
        • Ansell R.
        • McKenna L.
        • Connolly E.
        • Drotz W.
        • Kloosterman A.D.
        Could secondary DNA transfer falsely place someone at the scene of a crime?.
        J. Forensic Sci. 2016; 61 (Comments on C.M. Cale, M.E. Earll, K.E. Latham, G.L. Bush) (Journal of Forensic Sciences 61 (5) (2016) pp. 1401–1402): 196-203
        • Malsom S.
        • Flanagan N.
        • McAlister C.
        • Dixon L.
        The prevalence of mixed DNA profiles in fingernail samples taken from couples who co-habit using autosomal and Y-STRs.
        Forensic Sci. Int. Genet. 2009; 3: 57-62
        • Flanagan N.
        • McAlister C.
        The transfer and persistence of DNA under the fingernails following digital penetration of the vagina.
        Forensic Sci. Int. Genet. 2011; 5: 479-483
        • Matte M.
        • Williams L.
        • Frappier R.
        • Newman J.
        Prevalence and persistence of foreign DNA beneath fingernails.
        Forensic Sci. Int. Genet. 2012; 6: 236-243
        • Nurit B.
        • Anat G.
        • Michal S.
        • Lilach F.
        • Maya F.
        Evaluating the prevalence of DNA mixtures found in fingernail samples from victims and suspects in homicide cases.
        Forensic Sci. Int. Genet. 2011; 5: 532-537
        • Dowlman E.A.
        • Martin N.C.
        • Foy M.J.
        • Lochner T.
        • Neocleous T.
        The prevalence of mixed DNA profiles on fingernail swabs.
        Sci. Justice. 2010; 50: 64-71
        • Kettner M.
        • Cappel-Hoffmann S.
        • Makuch D.
        • Schmidt P.
        • Ramsthaler F.
        IPV – bridging the juridical gap between scratches and DNA detection under fingernails of cohabitating partners.
        Forensic Sci. Int. Genet. 2015; 14: 110-115
        • Wiegand P.
        • Bajanowski T.
        • Brinkmann B.
        DNA typing of debris from fingernails.
        Int. J. Legal Med. 1993; 106: 81-83
        • Bozzo W.R.
        • Colussi A.G.
        • Ortíz M.I.
        • Laborde L.
        • Pilili J.P.
        • Carini G.
        • Lojo M.M.
        Analysis of DNA from fingernail samples in criminal cases.
        Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5: e601-e602
        • Sanchez-Hanke M.
        • Püschel K.
        • Augustin C.
        • Wiegand P.
        • Brinkmann B.
        PCR-typing of DNA extracted from epidermal particles won by scratching.
        16th Congress of the International Society for Forensic Haemogenetics. 1996;
        • Cerri N.
        • Verzeletti A.
        • Cortellini V.
        • Cincotta A.
        • De Ferrari F.
        Prevalence of mixed DNA profiles in fingernail swabs from autoptic cases.
        Forensic Sci. Int. Genet. Suppl. Ser. 2009; 2: 163-164
        • Fernández-Rodrı́guez A.
        • Iturralde M.J.
        • Fernández de Simón L.
        • Capilla J.
        • Sancho M.
        Genetic analysis of fingernail debris: application to forensic casework.
        Int. Congr. Ser. 2003; 1239: 921-924
        • Piccinini A.
        A 5-year study on DNA recovered from fingernail clippings in homicide cases in Milan.
        Int. Congr. Ser. 2003; 1239: 929-932
        • Harbison S.-A.
        • Petricevic S.F.
        • Vintiner S.K.
        The persistence of DNA under fingernails following submersion in water.
        Int. Congr. Ser. 2003; 1239: 809-813
        • Hebda L.M.
        • Doran A.E.
        • Foran D.R.
        Collecting and analyzing DNA evidence from fingernails: a comparative study.
        J. Forensic Sci. 2014; 59: 1343-1350
        • Ruan T.
        • Barash M.
        • Gunn P.
        • Bruce D.
        Investigation of DNA transfer onto clothing during regular daily activities.
        Int. J. Legal Med. 2018; 132: 1035-1042
        • Noël S.
        • Lagace K.
        • Rogic A.
        • Granger D.
        • Bourgoin S.
        • Jolicoeur C.
        • Séguin D.
        DNA transfer during laundering may yield complete genetic profiles.
        Forensic Sci. Int. Genet. 2016; 23: 240-247
        • Blackie R.
        • Taylor D.
        • Linacre A.
        DNA profiles from clothing fibers using direct PCR.
        Forensic Sci. Med. Pathol. 2016; 12: 331-335
        • Stouder S.L.
        • Reubush K.J.
        • Hobson D.L.
        • Smith J.L.
        Trace evidence scrapings: a valuable source of DNA?.
        Forensic Science Communications. 2001; 4
        • Magee A.M.
        • Breathnach M.
        • Doak S.
        • Thornton F.
        • Noone C.
        • McKenna L.G.
        Wearer and non-wearer DNA on the collars and cuffs of upper garments of worn clothing.
        Forensic Science International: Genetics. 2018; 34: 152-161
      2. R v Pfennig [2016], SASC 170. Available at: http://www.austlii.edu.au/cgi-bin/viewdoc/au/cases/sa/SASC/2016/170.html.

      3. R v Pfennig (No 2) [2016], SASC 171. Available at: http://www.austlii.edu.au/cgi-bin/viewdoc/au/cases/sa/SASC/2016/171.html.

        • Schneider H.
        • Sommerer T.
        • Rand S.
        • Wiegand P.
        Hot flakes in cold cases.
        Int. J. Legal Med. 2011; 125: 543-548
        • van Oorschot R.A.H.
        • Szkuta B.
        • Verdon T.J.
        • Mitchell R.J.
        • Ballantyne K.N.
        Trace DNA profiling in missing persons investigations.
        in: Morewitz S.J. Sturdy Colls C. Handbook of Missing Persons. Springer, Berlin2016: 353-363
      4. A. Jamieson, S. Bader, Letter: Commentary on Breathnach et al., Forensic Science International: Genetics 25 (2016) e4–e5.

        • Cerdas L.
        • Herrera F.
        • Arrieta G.
        • Morelli C.
        • Álvarez K.
        • Gómez A.
        Menstrual cycle phase at the time of rape does not affect recovery of semen or amplification of STR profiles of a suspect in vaginal swabs.
        Forensic Sci. Int. 2016; 259: 36-40
        • Brotman R.M.
        • Melendez J.H.
        • Smith T.D.
        • Galai N.
        • Zenilman J.M.
        Effect of menses on clearance of Y-chromosome in vaginal fluid: implications for a biomarker of recent sexual activity.
        Sex. Transm. Dis. 2010; 37: 1-4
        • Morrison A.I.
        Persistence of spermatozoa in the vagina and cervix.
        Br. J. Vener. Dis. 1972; 48: 141-143
        • Casey D.G.
        • Domijan K.
        • MacNeill S.
        • Rizet D.
        • O’Connell D.
        • Ryan J.
        The persistence of sperm and the development of time since intercourse (TSI) guidelines in sexual assault cases at Forensic Science Ireland, Dublin, Ireland.
        J. Forensic Sci. 2017; 62: 585-592
        • Hellerud B.B.
        • Bouzga M.
        • Hoff-Olsen P.
        • Mevåg B.
        Semen detection: a retrospective overview from 2010.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e391-e392
        • Clarke E.
        • Fazakerley H.
        • Robinson L.
        Evidence recovery and persistence of semen in sexual assault investigation kits.
        ANZFSS 21st International Symposium on the Forensic Sciences. 2012;
        • Nittis M.
        • Franco M.
        • Cochrane C.
        New oral cut-off time limits in NSW.
        J. Forensic Leg. Med. 2016; 44: 92-97
        • Willott G.M.
        • Allard J.E.
        Spermatozoa - their persistence after sexual intercourse.
        Forensic Sci. Int. 1982; 19: 135-154
        • Astrup B.S.
        • Thomsen J.L.
        • Lauritsen J.
        • Ravn P.
        Detection of spermatozoa following consensual sexual intercourse.
        Forensic Sci. Int. 2012; 221: 137-141
        • DiFrancesco J.
        • Richards E.
        Persistence of spermatozoa: lessons learned from going to the sources.
        Sci. Justice. 2018; 58: 244-247
        • Olofsson J.
        • Mogensen H.S.
        • Hjort B.B.
        • Morling N.
        Evaluation of Y-STR analyses of sperm cell negative vaginal samples.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e141-e142
        • Hall A.
        • Ballantyne J.
        Novel Y-STR typing strategies reveal the genetic profile of the semen donor in extended interval post-coital cervicovaginal samples.
        Forensic Sci. Int. 2003; 136: 58-72
        • Benschop C.C.G.
        • Wiebosch D.C.
        • Kloosterman A.D.
        • Sijen T.
        Post-coital vaginal sampling with nylon flocked swabs improves DNA typing.
        Forensic Sci. Int. Genet. 2010; 4: 115-121
        • McDonald A.
        • Jones E.
        • Lewis J.
        • O’Rourke P.
        Y-STR analysis of digital and/or penile penetration cases with no detected spermatozoa.
        Forensic Sci. Int. Genet. 2015; 15: 84-89
        • Dziegelewski M.
        • Simich J.P.
        • Rittenhouse-Olson K.
        Use of a Y chromosome probe as an aid in the forensic proof of sexual assault.
        J. Forensic Sci. 2002; 47: 601-604
        • Pollack O.J.
        Semen and seminal stains.
        Arch. Pathol. 1943; 35: 140-184
        • Murray C.
        • McAlister C.
        • Elliott K.
        Identification and isolation of male cells using fluorescence in situ hybridisation and laser microdissection, for use in the investigation of sexual assault.
        Forensic Sci. Int. Genet. 2007; 1: 247-252
        • Albani P.P.
        • Patel J.
        • Fleming R.I.
        Background levels of male DNA in the vaginal cavity.
        Forensic Sci. Int. Genet. 2018; 33: 110-116
        • Stanciu C.
        • Philpott M.
        • Kwon Y.
        • Bustamante E.
        • Ehrhardt C.
        Optical characterization of epidermal cells and their relationship to DNA recovery from touch samples.
        F1000Research. 2015; 4
        • Brayley-Morris H.
        • Sorrell A.
        • Revoir A.P.
        • Meakin G.E.
        • Court D.S.
        • Morgan R.M.
        Persistence of DNA from laundered semen stains: implications for child sex trafficking cases.
        Forensic Sci. Int. Genet. 2015; 19: 165-171
        • Edler C.
        • Gehl A.
        • Kohwagner J.
        • Walther M.
        • Krebs O.
        • Augustin C.
        • Klein A.
        Blood trace evidence on washed textiles - a systematic approach.
        Int. J. Legal Med. 2017; 131: 1179-1189
        • Kulstein G.
        • Wiegand P.
        Comprehensive examination of conventional and innovative body fluid identification approaches and DNA profiling of laundered blood- and saliva-stained pieces of cloths.
        Int. J. Legal Med. 2018; 132: 67-81
        • Kamphausen T.
        • Fandel S.
        • Gutmann J.
        • Bajanowski T.
        • Poetsch M.
        Everything clean? Transfer of DNA traces between textiles in the washtub.
        Int. J. Legal Med. 2015; 129: 709-714
        • Helmus J.
        • Zorell S.
        • Bajanowski T.
        • Poetsch M.
        Persistence of DNA on clothes after exposure to water for different time periods - a study on bathtub, pond, and river.
        Int. J. Legal Med. 2018; 132: 99-106
        • Voskoboinik L.
        • Amiel M.
        • Reshef A.
        • Gafny R.
        • Barash M.
        Laundry in a washing machine as a mediator of secondary and tertiary DNA transfer.
        Int. J. Legal Med. 2018; 132: 373-378
        • van Oorschot R.A.H.
        • McColl D.L.
        • Alderton J.E.
        • Harvey M.L.
        • Mitchell R.J.
        • Szkuta B.
        Activities between activities of focus - relevant when assessing DNA transfer probabilities.
        Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5: e75-e77
        • Stella C.J.
        • Mitchell R.J.
        • van Oorschot R.A.H.
        Hand activities during robberies - relevance to consideration of DNA transfer and detection.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e3-e5
        • Durdle A.
        • Verdon T.J.
        • Mitchell R.J.
        • van Oorschot R.A.H.
        Location of artifacts deposited by the blow fly Lucilia cuprina after feeding on human blood at simulated indoor crime scenes.
        J. Forensic Sci. 2018; 63: 1261-1268
        • Durdle A.
        • van Oorschot R.A.H.
        • Mitchell R.J.
        The transfer of human DNA by Lucilia cuprina (Meigen) (Diptera: calliphoridae).
        Forensic Sci. Int. Genet. Suppl. Ser. 2009; 2: 180-182
        • Durdle A.
        • Mitchell R.J.
        • van Oorschot R.A.H.
        The human DNA content in artifacts deposited by the blowfly Lucilia cuprina fed human blood, semen and saliva.
        Forensic Sci. Int. 2013; 233: 212-219
        • Durdle A.
        • van Oorschot R.A.H.
        • Mitchell R.J.
        The morphology of fecal and regurgitation artifacts deposited by the blow fly Lucilia cuprina fed a diet of human blood.
        J. Forensic Sci. 2013; 58: 897-903
        • Durdle A.
        • Mitchell R.J.
        • van Oorschot R.A.H.
        The use of forensic tests to distinguish blowfly artifacts from human blood, semen, and saliva.
        J. Forensic Sci. 2015; 60: 468-470
        • Replogle J.
        • Lord W.
        • Budowle B.
        • Meinking T.
        • Taplin D.
        Identification of host DNA by amplified fragment length polymorphism analysis: preliminary analysis of human crab louse (Anoplura: pediculidae) excreta.
        J. Med. Entomol. 1994; 31: 686-690
        • Coulson R.M.R.
        • Curtis C.F.
        • Ready P.D.
        • Hill N.
        • Smith D.F.
        Amplification and analysis of human DNA present in mosquito bloodmeals.
        Med. Vet. Entomol. 1990; 4: 357-366
        • Kreike J.
        • Kampfer S.
        Isolation and characterization of human DNA from mosquitoes (Culicidae).
        Int. J. Legal Med. 1999; 112: 380-382
        • Spitaleri S.
        • Romano C.
        • Di Luise E.
        • Ginestra E.
        • Saravo L.
        Genotyping of human DNA recovered from mosquitoes found on a crime scene.
        Int. Congr. Ser. 2006; 1288: 574-576
      5. Fitzgerald v The Queen [2014], HCA 28. Available at: http://www.austlii.edu.au/cgi-bin/sinodisp/au/cases/cth/HCA/2014/28.html.

      6. Victorian Government Printer, Melbourne, Australia.
        2010 (Available at:) (accessed 8 July 2018)
        • Himmelreich C.
        Germany’s Phantom Serial Killer: a DNA Blunder, Time World.
        (Available at:)2009 (accessed 8 July 2018)
      7. Commonwealth vs. Dirk K. Greineder [2013], 464 Mass. 580. Available at: http://masscases.com/cases/sjc/464/464mass580.html.

      8. R v Hillier [2007], HCA 13. Available at: http://www.austlii.edu.au/cgi-bin/sinodisp/au/cases/cth/HCA/2007/13.html.

        • van Oorschot R.A.H.
        • Verdon T.J.
        • Ballantyne K.N.
        Collection of samples for DNA analysis.
        in: Goodwin W. Forensic DNA Typing Protocols. Springer, New York, NY2016: 1-12
        • Verdon T.J.
        • Mitchell R.J.
        • van Oorschot R.A.H.
        Evaluation of tapelifting as a collection method for touch DNA.
        Forensic Sci. Int. Genet. 2014; 8: 179-186
        • Verdon T.J.
        • Mitchell R.J.
        • van Oorschot R.A.H.
        Swabs as DNA collection devices for sampling different biological materials from different substrates.
        J. Forensic Sci. 2014; 59: 1080-1089
        • Pang B.C.M.
        • Cheung B.K.K.
        Double swab technique for collecting touched evidence.
        Leg. Med. 2007; 9: 181-184
        • Aloraer D.
        • Hassan N.H.
        • Albarzinji B.
        • Goodwin W.
        Collection protocols for the recovery of biological samples.
        Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5e207–e209
        • Hess S.
        • Haas C.
        Recovery of trace DNA on clothing: a comparison of mini-tape lifting and three other forensic evidence collection techniques.
        J. Forensic Sci. 2017; 62: 187-191
        • de Bruin K.G.
        • Verheij S.M.
        • Veenhoven M.
        • Sijen T.
        Comparison of stubbing and the double swab method for collecting offender epithelial material from a victim’s skin.
        Forensic Sci. Int. Genet. 2012; 6: 219-223
        • Wood I.
        • Park S.
        • Tooke J.
        • Smith O.
        • Morgan R.M.
        • Meakin G.E.
        Efficiencies of recovery and extraction of trace DNA from non-porous surfaces.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e153-e155
        • Bond J.W.
        • Weart J.R.
        The effectiveness of trace DNA profiling - a comparison between a U.S. And a U.K. Law enforcement jurisdiction.
        J. Forensic Sci. 2017; 62: 753-760
        • Thomasma S.M.
        • Foran D.R.
        The influence of swabbing solutions on DNA recovery from touch samples.
        J. Forensic Sci. 2013; 58: 465-469
        • Plaza D.T.
        • Mealy J.L.
        • Lane J.N.
        • Parsons M.N.
        • Bathrick A.S.
        • Slack D.P.
        Nondestructive biological evidence collection with alternative swabs and adhesive lifters.
        J. Forensic Sci. 2016; 61: 485-488
        • Hedman J.
        • Ågren J.
        • Ansell R.
        Crime scene DNA sampling by wet-vacuum applying M-Vac.
        Forensic Sci. Int. Genet. Suppl. Ser. 2015; 5: e89-e90
        • Dieltjes P.
        • Mieremet R.
        • Zuniga S.
        • Kraaijenbrink T.
        • Pijpe J.
        • de Knijff P.
        A sensitive method to extract DNA from biological traces present on ammunition for the purpose of genetic profiling.
        Int. J. Legal Med. 2011; 125: 597-602
        • Ip S.C.Y.
        • Lin S.-W.
        • Lai K.-M.
        An evaluation of the performance of five extraction methods: Chelex® 100, QIAamp® DNA Blood Mini Kit, QIAamp® DNA Investigator Kit, QIAsymphony® DNA Investigator® Kit and DNA IQ™.
        Sci. Justice. 2015; 55: 200-208
        • Templeton J.E.L.
        • Taylor D.
        • Handt O.
        • Skuza P.
        • Linacre A.
        Direct PCR improves the recovery of DNA from various substrates.
        J. Forensic Sci. 2015; 60: 1558-1562
        • Swaran Y.C.
        • Welch L.
        A comparison between direct PCR and extraction to generate DNA profiles from samples retrieved from various substrates.
        Forensic Sci. Int. Genet. 2012; 6: 407-412
        • Ambers A.
        • Wiley R.
        • Novroski N.
        • Budowle B.
        Direct PCR amplification of DNA from human bloodstains, saliva, and touch samples collected with microFLOQ® swabs.
        Forensic Sci. Int. Genet. 2018; 32: 80-87
        • Cavanaugh S.E.
        • Bathrick A.S.
        Direct PCR amplification of forensic touch and other challenging DNA samples: a review.
        Forensic Sci. Int. Genet. 2018; 32: 40-49
        • Martin B.
        • Blackie R.
        • Taylor D.
        • Linacre A.
        DNA profiles generated from a range of touched sample types.
        Forensic Sci. Int. Genet. 2018; 36: 13-19
        • Zuidberg M.
        • Bettman M.
        • Aarts B.
        • Sjerps M.
        • Kokshoorn B.
        Targeting relevant sampling areas for human biological traces: where to sample displaced bodies for offender DNA?.
        Sci. Justice. 2018; https://doi.org/10.1016/j.scijus.2018.10.002
        • Fraser J.
        • Sturrock K.
        • Deacon P.
        • Bleay S.
        • Bremner D.H.
        Visualisation of fingermarks and grab impressions on fabrics. Part 1: Gold/zinc vacuum metal deposition.
        Forensic Sci. Int. 2011; 208: 74-78
        • Knighting S.
        • Fraser J.
        • Sturrock K.
        • Deacon P.
        • Bleay S.
        • Bremner D.H.
        Visualisation of fingermarks and grab impressions on dark fabrics using silver vacuum metal deposition.
        Sci. Justice. 2013; 53: 309-314
        • Haines A.M.
        • Tobe S.S.
        • Kobus H.
        • Linacre A.
        Detection of DNA within fingermarks.
        Forensic Sci. Int. Genet. Suppl. Ser. 2013; 4: e290-e291
        • Haines A.M.
        • Linacre A.
        Detection of latent DNA on tape-lifts using fluorescent in situ detection.
        Aust. J. Forensic Sci. 2018; https://doi.org/10.1080/00450618.2017.1416174
        • Klein S.B.
        • Buoncristiani M.R.
        Evaluating the efficacy of DNA differential extraction methods for sexual assault evidence.
        Forensic Sci. Int. Genet. 2017; 29: 109-117
        • Vandewoestyne M.
        • Deforce D.
        Laser capture microdissection for forensic DNA analysis.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e117-e118
        • Anoruo B.
        • van Oorschot R.A.H.
        • Mitchell J.
        • Howells D.
        Isolating cells from non-sperm cellular mixtures using the PALM® microlaser micro dissection system.
        Forensic Sci. Int. 2007; 173: 93-96
        • Elliott K.
        • Hill D.S.
        • Lambert C.
        • Burroughes T.R.
        • Gill P.
        Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides.
        Forensic Sci. Int. 2003; 137: 28-36
        • Budimlija Z.
        • Lechpammer M.
        • Popiolek D.
        • Fogt F.
        • Prinz M.
        • Bieber F.
        Forensic applications of laser capture microdissection: use in DNA-based parentage testing and platform validation.
        Croat. Med. J. 2005; 46: 549-555
        • Vandewoestyne M.
        • Deforce D.
        Laser capture microdissection in forensic research: a review.
        Int. J. Legal Med. 2010; 124: 513-521
        • Sanders C.T.
        • Sanchez N.
        • Ballantyne J.
        • Peterson D.A.
        Laser microdissection separation of pure spermatozoa from epithelial cells for short tandem repeat analysis.
        J. Forensic Sci. 2006; 51: 748-757
        • Meredith M.
        • Bright J.-A.
        • Cockerton S.
        • Vintiner S.
        Development of a one-tube extraction and amplification method for DNA analysis of sperm and epithelial cells recovered from forensic samples by laser microdissection.
        Forensic Sci. Int. Genet. 2012; 6: 91-96
        • Verdon T.J.
        • Mitchell R.J.
        • Chen W.
        • Xiao K.
        • van Oorschot R.A.H.
        FACS separation of non-compromised forensically relevant biological mixtures.
        Forensic Sci. Int. Genet. 2015; 14: 194-200
        • Williamson V.R.
        • Laris T.M.
        • Romano R.
        • Marciano M.A.
        Enhanced DNA mixture deconvolution of sexual offense samples using the DEPArray™ system.
        Forensic Sci. Int. Genet. 2018; 34: 265-276
        • Fontana F.
        • et al.
        Isolation and genetic analysis of pure cells from forensic biological mixtures: the precision of a digital approach.
        Forensic Sci. Int. Genet. 2017; 29: 225-241
        • Dean L.
        • Kwon Y.J.
        • Philpott M.K.
        • Stanciu C.E.
        • Seashols-Williams S.J.
        • Dawson Cruz T.
        • Sturgill J.
        • Ehrhardt C.J.
        Separation of uncompromised whole blood mixtures for single source STR profiling using fluorescently-labeled human leukocyte antigen (HLA) probes and fluorescence activated cell sorting (FACS).
        Forensic Sci. Int. Genet. 2015; 17: 8-16
        • Anslinger K.
        • Bayer B.
        • Mack B.
        • Eisenmenger W.
        Sex-specific fluorescent labelling of cells for laser microdissection and DNA profiling.
        Int. J. Legal Med. 2007; 121: 54-56
        • Vandewoestyne M.
        • Van Hoofstat D.
        • Van Nieuwerburgh F.
        • Deforce D.
        Suspension fluorescence in situ hybridization (S-FISH) combined with automatic detection and laser microdissection for STR profiling of male cells in male/female mixtures.
        Int. J. Legal Med. 2009; 123: 441-447
        • Dziak R.
        • Peneder A.
        • Buetter A.
        • Hageman C.
        Trace DNA sampling success from evidence items commonly encountered in forensic casework.
        J. Forensic Sci. 2018; 63: 835-841
        • Castella V.
        • Mangin P.
        DNA profiling success and relevance of 1739 contact stains from caseworks.
        Forensic Sci. Int. Genet. Suppl. Ser. 2008; 1: 405-407
        • van Oorschot R.A.H.
        Assessing DNA profiling success rates: need for more and better collection of relevant data.
        Forensic Sci. Policy Manag. Int. J. 2012; 3: 37-41
        • Raymond J.J.
        • van Oorschot R.A.H.
        • Walsh S.J.
        • Roux C.
        Trace DNA analysis: do you know what your neighbour is doing? A multi-jurisdictional survey.
        Forensic Sci. Int. Genet. 2008; 2: 19-28
        • Raymond J.J.
        • van Oorschot R.A.H.
        • Walsh S.J.
        • Gunn P.R.
        • Roux C.P.
        How far have we come with trace DNA since 2004? The Australian and New Zealand experience.
        Aust. J. Forensic Sci. 2011; 43: 231-244
        • Association of Forensic Science Providers
        Standards for the formulation of evaluative forensic science expert opinion.
        Sci. Justice. 2009; 49: 161-164
      9. National Institute of Forensic Science Australia New Zealand, an Introductory Guide to Evaluative Reporting.
        2017 (Available at:) (Accessed 9 July 2018)
        • Jackson G.
        • Aitken C.
        • Roberts P.
        Case assessment and interpretation of expert evidence: guidance for judges, lawyers.
        Forensic Scientists and Expert Witnesses. Royal Statistical Society, 2015 (Available at:) (Accessed 12 July 2018)
        • Benschop C.C.G.
        • Connolly E.
        • Ansell R.
        • Kokshoorn B.
        Results of an inter and intra laboratory exercise on the assessment of complex autosomal DNA profiles.
        Sci. Justice. 2017; 57: 21-27
        • Butler J.M.
        • Kline M.C.
        • Coble M.D.
        NIST interlaboratory studies involving DNA mixtures (MIX05 and MIX13): variation observed and lessons learned.
        Forensic Sci. Int. Genet. 2018; 37: 81-94
        • Buckleton J.S.
        • Bright J.-A.
        • Cheng K.
        • Budowle B.
        • Coble M.D.
        NIST interlaboratory studies involving DNA mixtures (MIX13): a modern analysis.
        Forensic Sci. Int. Genet. 2018; 37: 172-179
        • O’Hagan A.
        • Buck C.E.
        • Daneshkhah A.
        • Eiser J.R.
        • Garthwaite P.H.
        • Jenkinson D.J.
        • Oakley J.E.
        • Rakow T.
        Uncertain Judgements: Eliciting Experts’ Probabilities.
        John Wiley & Sons, Ltd., Chichester, West Sussex2006
        • Jamieson A.
        • Mullen C.
        Show Us the Files, Journal of the Law Society of Scotland.
        (Available at:)2011 (Accessed 9 July 2018)
        • Jamieson A.
        Weighted scales, Journal of the Law Society of Scotland.
        (Available at:)2012 (Accessed 9 July 2018)
        • Edmond G.
        • et al.
        How to cross-examine forensic scientists: a guide for lawyers.
        Australian Bar Review. 2014; 39: 174-197
        • Edmond G.
        • et al.
        Model forensic science.
        Aust. J. Forensic Sci. 2016; 48: 496-537
        • Finnebraaten M.
        • Granér T.
        • Hoff-Olsen P.
        May a speaking individual contaminate the routine DNA laboratory?.
        Forensic Sci. Int. Genet. Suppl. Ser. 2008; 1: 421-422
        • Rutty G.N.
        • Hopwood A.
        • Tucker V.
        The effectiveness of protective clothing in the reduction of potential DNA contamination of the scene of crime.
        Int. J. Legal Med. 2003; 117: 170-174
        • Daniel R.
        • van Oorschot R.A.H.
        An investigation of the presence of DNA on unused laboratory gloves.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e45-e46
        • Gibb C.
        • Gutowski S.J.
        • van Oorschot R.A.H.
        Assessment of the possibility of DNA accumulation and transfer in a superglue chamber.
        J. Forensic Identification. 2012; 62: 409-424
        • Poy A.L.
        • van Oorschot R.A.H.
        Beware; gloves and equipment used during the examination of exhibits are potential vectors for transfer of DNA-containing material.
        Int. Congr. Ser. 2006; 1288: 556-558
        • Pickrahn I.
        • Kreindl G.
        • Müller E.
        • Dunkelmann B.
        • Zahrer W.
        • Cemper-Kiesslich J.
        • Neuhuber F.
        Contamination incidents in the pre-analytical phase of forensic DNA analysis in Austria - statistics of 17 years.
        Forensic Sci. Int. Genet. 2017; 31: 12-18
        • van Oorschot R.A.H.
        • Found B.
        • Ballantyne K.N.
        Considerations relating to the components of a laboratory DNA contamination minimisation monitoring (DCMM) Program.
        Forensic Sci. Policy Manag. 2015; 6: 91-105
        • Ballantyne K.N.
        • Poy A.L.
        • van Oorschot R.A.H.
        Environmental DNA monitoring: beware of the transition to more sensitive typing methodologies.
        Aust. J. Forensic Sci. 2013; 45: 323-340
        • Ballantyne K.N.
        • Salemi R.
        • Guarino F.
        • Pearson J.R.
        • Garlepp D.
        • Fowler S.
        • van Oorschot R.A.H.
        DNA contamination minimisation – finding an effective cleaning method.
        Aust. J. Forensic Sci. 2015; 47: 428-439
        • Hauhart R.C.
        • Menius K.R.
        DNA evidence: examining police officers’ knowledge of handling procedures in a mid-size department.
        Int. J. Criminol. Sociol. 2014; 3: 360-376
        • Kampmann M.-L.
        • Børsting C.
        • Morling N.
        Decrease DNA contamination in the laboratories.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e577-e578
        • Vandewoestyne M.
        • Van Hoofstat D.
        • De Groote S.
        • Van Thuyne N.
        • Haerinck S.
        • Van Nieuwerburgh F.
        • Deforce D.
        Sources of DNA contamination and decontamination procedures in the forensic laboratory.
        J. Forensic Res. 2011; S2:001
        • Kloosterman A.
        • Sjerps M.
        • Quak A.
        Error rates in forensic DNA analysis: definition, numbers, impact and communication.
        Forensic Sci. Int. Genet. 2014; 12: 77-85
        • Basset P.
        • Castella V.
        Lessons from a study of DNA contaminations from police services and forensic laboratories in Switzerland.
        Forensic Sci. Int. Genet. 2018; 33: 147-154
        • Ansell R.
        Internal quality control in forensic DNA analysis.
        Accredit. Qual. Assur. 2013; 18: 279-289
        • Forensic Science Regulator
        Forensic Science Providers: Codes of Practice and Conduct, UK Government.
        (Available at:)2017 (Accessed 1 June 2018)
        • Forensic Science Regulator
        The Control and Avoidance of Contamination in Laboratory Activities Involving DNA Evidence Recovery and Analysis, UK Government.
        (Available at:)2015 (Accessed 25 May 2017)
        • Forensic Science Regulator
        The Control and Avoidance of Contamination in Crime Scene Examination Involving DNA Evidence Recovery, UK Government.
        (Available at:)2016 (Accessed 25 May 2017)
        • Forensic Science Regulator
        DNA Anti-Contamination – Forensic Medical Examination in Sexual Assault Referral Centres and Custodial Facilities, UK Government.
        (Available at:)2016 (Accessed 27 June 2018)
        • Forensic Science Regulator
        Protocol: DNA Contamination Detection -The Management and Use of Staff Elimination DNA Databases, UK Government.
        (Available at:)2014 (Accessed 27 June 2018)
        • ENFSI DNA working group
        DNA Contamination Prevention Guidelines, European Network of Forensic Science Institutes.
        (Available at:)2017 (Accessed 27 June 2018)
        • Gill P.
        • Rowlands D.
        • Tully G.
        • Bastisch I.
        • Staples T.
        • Scott P.
        Manufacturer contamination of disposable plastic-ware and other reagents - an agreed position statement by ENFSI, SWGDAM and BSAG.
        Forensic Sci. Int. Genet. 2010; 4: 269-270
        • British Standards Institution
        Minimizing the Risk of Human DNA Contamination in Products Used to Collect, Store and Analyze Biological Material for Forensic Purposes — Requirements.
        2016 (British Standards Online)
        • Vanek D.
        • Saskova L.
        • Votrubova J.
        Does the new ISO 18385:2016 standard for forensic DNA-grade products need a revision?.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e148-e149
        • Lapointe M.
        • Rogic A.
        • Bourgoin S.
        • Jolicoeur C.
        • Séguin D.
        Leading-edge forensic DNA analyses and the necessity of including crime scene investigators, police officers and technicians in a DNA elimination database.
        Forensic Sci. Int. Genet. 2015; 19: 50-55
        • Biedermann A.
        • Champod C.
        • Jackson G.
        • Gill P.
        • Taylor D.
        • Butler J.
        • Morling N.
        • Hicks T.
        • Vuille J.
        • Taroni F.
        Evaluation of forensic DNA traces when propositions of interest relate to activities: analysis and discussion of recurrent concerns.
        Front. Genet. 2016; 7
        • van Oorschot R.A.H.
        • Szkuta B.
        • Ballantyne K.N.
        • Goray M.
        Need for dedicated training, competency assessment, authorisations and ongoing proficiency testing for those addressing DNA transfer issues.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e32-e34
        • Tully G.
        Forensic Science Regulator: Annual Report, UK Government.
        (Available at:)2018 (Accessed 8 July 2018)
        • Taroni F.
        • Biedermann A.
        • Bozza S.
        • Garbolino P.
        • Aitken C.G.G.
        Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science.
        second ed. John Wiley & Sons, Chichester, West Sussex2014
        • Evett I.W.
        • Gill P.D.
        • Jackson G.
        • Whitaker J.
        • Champod C.
        Interpreting small quantities of DNA: the hierarchy of propositions and the use of Bayesian networks.
        J. Forensic Sci. 2002; 47: 520-530
        • Cook R.
        • Evett I.W.
        • Jackson G.
        • Jones P.J.
        • Lambert J.A.
        A model for case assessment and interpretation.
        Sci. Justice. 1998; 38: 151-156
        • Taylor D.
        The evaluation of exclusionary DNA results: a discussion of issues in R v. Drummond, Law.
        Law Probab. Risk. 2016; 15: 175-197
        • Wieten R.
        • De Zoete J.
        • Blankers B.
        • Kokshoorn B.
        The interpretation of traces found on adhesive tapes, Law.
        Law Probab. Risk. 2015; 14: 305-322
        • Gill P.
        • et al.
        DNA Commission of the International Society for Forensic Genetics: assessing the value of forensic biological evidence - guidelines highlighting the importance of propositions: part I: evaluation of DNA profiling comparisons given (sub-) source propositions.
        Forensic Sci. Int. Genet. 2018; 36: 189-202