Research paper| Volume 44, 102204, January 2020

Download started.


Ysurnames? The patrilineal Y-chromosome and surname correlation for DNA kinship research

Published:November 09, 2019DOI:


      • ChrY-surname-correlation can be useful for priority listing in familial searching.
      • For a perfect genetic match, a surname match frequency (SMF) of 98% was observed.
      • Our in-house YForGen with 46 Y-STRs is the most optimal kit with the highest SMF.
      • SMF varies when encountering Y-SNPs, surname frequency and geographical distance.
      • Surname prediction model with an area under the curve of 0.9 could be developed.


      The Y-chromosome is a widely studied and useful small part of the genome providing different applications for interdisciplinary research. In many (Western) societies, the Y-chromosome and surnames are paternally co-inherited, suggesting a corresponding Y-haplotype for every namesake. While it has already been observed that this correlation may be disrupted by a false-paternity event, adoption, anonymous sperm donor or the co-founding of surnames, extensive information on the strength of the surname match frequency (SMF) with the Y-chromosome remains rather unknown. For the first time in Belgium and the Netherlands, we were able to study this correlation using 2,401 males genotyped for 46 Y-STRs and 183 Y-SNPs. The SMF was observed to be dependent on the number of Y-STRs analyzed, their mutation rates and the number of Y-STR differences allowed for a kinship. For a perfect match, the Yfiler® Plus and our in-house YForGen kit gave a similar high SMF of 98%, but for non-perfect matches, the latter could overall be identified as the best kit. The SMF generally increased due to less mismatches when encountering [
      • Jobling M.A.
      In the name of the father: surnames and genetics.
      ] deep Y-subhaplogroups, [
      • Kayser M.
      Forensic use of Y-chromosome DNA: a general overview.
      ] less frequently occurring surnames, and [
      • Andersen M.M.
      • Balding D.J.
      How convincing is a matching Y-chromosome profile?.
      ] small geographical distances between relatives. This novel information enabled the design of a surname prediction model based on genetic and geographical distances of a kinship. The prediction model has an area under the curve (AUC) of 0.9 and is therefore useable for DNA kinship priority listing in estimation applications like forensic familial searching.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Jobling M.A.
        In the name of the father: surnames and genetics.
        Trends Genet. 2001; 17: 353-357
        • Kayser M.
        Forensic use of Y-chromosome DNA: a general overview.
        Hum Genet. Springer Berlin Heidelberg. 2017; 136: 621-635
        • Andersen M.M.
        • Balding D.J.
        How convincing is a matching Y-chromosome profile?.
        PLoS Genet. 2017; 13e1007028
        • Calafell F.
        • Larmuseau M.H.D.
        The Y chromosome as the most popular marker in genetic genealogy benefits interdisciplinary research.
        Hum Genet. Springer Berlin Heidelberg. 2017; 136: 559-573
        • Bieber F.R.
        • Brenner C.H.
        • Lazer D.
        Finding criminals through DNA of their relatives.
        Science. 2006; 312 (80-): 1315-1316
        • Nachman M.W.
        • Crowell S.L.
        Estimate of the mutation rate per nucleotide in humans.
        Genetics. 2000;
        • Balanovsky O.
        Toward a consensus on SNP and STR mutation rates on the human Y-chromosome.
        Hum Genet. Springer Berlin Heidelberg. 2017; 136: 575-590
        • Van Oven M.
        • Van Geystelen A.
        • Kayser M.
        • Decorte R.
        • Larmuseau M.H.
        Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome.
        Hum. Mutat. 2014; 35: 187-191
        • Jobling M.A.
        • Tyler-Smith C.
        The human Y chromosome: an evolutionary marker comes of age.
        Nat. Rev. Genet. 2003; 4: 598-612
        • Underhill P.A.
        • Shen P.
        • Lin A.A.
        • Jin L.
        • Passarino G.
        • Yang W.H.
        • et al.
        Y chromosome sequence variation and the history of human populations.
        Nat. Genet. 2000; 26: 358-361
        • Ballantyne K.N.
        • Goedbloed M.
        • Fang R.
        • Schaap O.
        • Lao O.
        • Wollstein A.
        • et al.
        Mutability of Y-chromosomal microsatellites: rates, characteristics, molecular bases, and forensic implications.
        Am. J. Hum. Genet. 2010; 87: 341-353
        • Burgarella C.
        • Navascués M.
        Mutation rate estimates for 110 Y-chromosome STRs combining population and father-son pair data.
        Eur. J. Hum. Genet. 2011; 19: 70-75
        • Ballantyne K.N.
        • Ralf A.
        • Aboukhalid R.
        • Achakzai N.M.
        • Anjos M.J.
        • Ayub Q.
        • et al.
        Toward male individualization with rapidly mutating Y-Chromosomal short tandem repeats.
        Hum. Mutat. 2014; 35: 1021-1032
        • Claerhout S.
        • Vandenbosch M.
        • Nivelle K.
        • Gruyters L.
        • Peeters A.
        • Larmuseau M.H.D.
        • et al.
        Determining Y-STR mutation rates in deep-routing genealogies: Identification of haplogroup differences.
        Forensic Sci. Int. Genet. 2018; 34: 1-10
        • Larmuseau M.H.D.
        • Vanderheyden N.
        • Van Geystelen A.
        • Van Oven M.
        • De Knijff P.
        • Decorte R.
        Recent radiation within Y-chromosomal haplogroup R-M269 resulted in high Y-STR haplotype resemblance.
        Ann. Hum. Genet. 2014; 78: 92-103
        • King T.E.
        • Jobling M.A.
        What’s in a name? Y chromosomes, surnames and the genetic genealogy revolution.
        Trends Genet. 2009; 25: 351-360
        • Larmuseau M.H.D.
        • Vanoverbeke J.
        • Van Geystelen A.
        • Defraene G.
        • Vanderheyden N.
        • Matthys K.
        • et al.
        Low historical rates of cuckoldry in a Western European human population traced by Y-chromosome and genealogical data.
        Proc R Soc B Biol Sci. 2013; 280 ([Internet]Available from:): 20132400
        • Anderson K.G.
        How Well Does Paternity Confidence Evidence from Worldwide Nonpaternity Rates.
        Curr. Anthropol. 2006; 47 (Tower DH, A US.): 513-520
        • Wolf M.
        • Musch J.
        • Enczmann J.
        • Fischer J.
        Estimating the Prevalence of Nonpaternity in Germany.
        Hum. Nat. 2012; 23: 208-217
        • Sasse G.
        • Müller H.
        • Chakrabory R.
        • Ott J.
        Estimating the Frequency of Nonpaternity in Switzerland.
        Hum. Hered. 1994; 44: 337-343
        • Greeff J.M.
        • Erasmus J.C.
        Three hundred years of low non-paternity in a human population.
        Heredity (Edinb). 2015; 115 ([Internet]. Nature Publishing Group Available from:): 396-404
        • Boattini A.
        • Sarno S.
        • Pedrini P.
        • Medoro C.
        • Carta M.
        • Tucci S.
        • et al.
        Traces of medieval migrations in a socially stratified population from Northern Italy. Evidence from uniparental markers and deep-rooted pedigrees.
        Heredity (Edinb). 2015; 114: 155-162
        • Solé-Morata N.
        • Bertranpetit J.
        • Comas D.
        • Calafell F.
        Y-chromosome diversity in Catalan suRNAme samples: Insights into suRNAme origin and frequency.
        Eur. J. Hum. Genet. 2015; 23: 1549-1557
        • Larmuseau M.H.D.
        • Matthijs K.
        • Wenseleers T.
        Cuckolded fathers rare in human populations.
        Trends Ecol. Evol. (Amst.). 2016; 31: 327-329
        • Larmuseau M.H.D.
        • Claerhout S.
        • Gruyters L.
        • Nivelle K.
        • Vandenbosch M.
        • Peeters A.
        • et al.
        Genetic-genealogy approach reveals low rate of extrapair paternity in historical Dutch populations.
        Am. J. Hum. Biol. 2017; 29: 1-9
        • Claerhout S.
        Genetisch-genealogisch Verwantschapsonderzoek in De Lage Landen Op Basis Van Y-chromosomale Variatie.
        (Master dissertation) KU Leuven, Belgium2016
        • Gruyters L.
        • Claerhout S.
        Spatio-temporele Analyse Van De Menselijke Koekoeksgraad in De Lage Landen.
        (Master dissertation) KU Leuven, Belgium2017
        • King T.E.
        • Ballereau S.J.
        • Schürer K.E.
        • Jobling M.A.
        Genetic Signatures of Coancestry within Surnames.
        Curr. Biol. 2006; 16: 384-388
        • Martinez-Cadenas C.
        • Blanco-Verea A.
        • Hernando B.
        • Busby G.B.J.
        • Brion M.
        • Carracedo A.
        • et al.
        The relationship between surname frequency and Y chromosome variation in Spain.
        Eur. J. Hum. Genet. 2016; 24 ([Internet]. Nature Publishing Group Available from:): 120-128
        • McEvoy B.
        • Bradley D.G.
        Y-chromosomes and the extent of patrilineal ancestry in Irish surnames.
        Hum. Genet. 2006; 119: 212-219
        • Solé-Morata N.
        • Bertranpetit J.
        • Comas D.
        • Calafell F.
        Recent radiation of R-M269 and high Y-STR haplotype resemblance confirmed.
        Ann. Hum. Genet. 2014; 78: 253-254
        • King T.E.
        • Ballereau S.J.
        • Sch??rer K.E.
        • Jobling M.A.
        Genetic signatures of coancestry within surnames.
        Curr. Biol. 2006; 16: 384-388
        • Manni F.
        • Toupance B.
        • Sabbagh A.
        • Heyer E.
        New Method for Surname Studies of Ancient Patrilineal Population Structures, and Possible Application to Improvement of Y-Chromosome Sampling.
        Am. J. Phys. Anthropol. 2005; 126: 214-228
      1. Marynissen A. Alles over familienamen. Retrieved from [Internet].; Available from:

        • Claerhout S.
        • Van Der Haegen M.
        • Vangeel L.
        • Larmuseau M.H.D.
        • Decorte R.
        A game of hide and seq : Identification of parallel Y-STR evolution in deep-rooting pedigrees.
        Eur. J. Hum. Genet. 2018; 27: 637-646
        • Debrabandere F.
        • De Baets P.
        Woordenboek Van De Familienamen in België En Noord-frankrijk.
        Veen, Amsterdam2003
        • Walsh B.
        Estimating the time to the most recent common ancestor for the Y chromosome or mitochondrial DNA for a pair of individuals.
        Genetics. 2001; 158: 897-912
        • Pedregosa F.
        • Weiss R.
        • Brucher M.
        Scikit-learn: Machine Learning in Python.
        J. Mach. Learn. Res. 2011; 12: 2825-2830
        • Hanley J.
        • Mcneil B.
        The meaning and use of the area under a receiver operating characteristic (ROC) curve.
        Radiology. 1982; 143: 29-36
        • King T.E.
        • Jobling M.A.
        Founders, drift, and infidelity: The relationship between y chromosome diversity and patrilineal surnames.
        Mol. Biol. Evol. 2009; 26: 1093-1102
        • Larmuseau M.H.D.
        • Vanderheyden N.
        • Van Geystelen A.
        • Decorte R.
        A substantially lower frequency of uninformative matches between 23 versus 17 Y-STR haplotypes in north Western Europe.
        Forensic Sci. Int. Genet. 2014; 11 ([Internet]. Elsevier Ireland Ltd Available from:): 214-219
        • Larmuseau M.H.D.
        • Vanoverbeke J.
        • Gielis G.
        • Vanderheyden N.
        • Larmuseau H.F.M.
        • Decorte R.
        In the name of the migrant father: analysis of surname origins identifies genetic admixture events undetectable from genealogical records.
        Heredity (Edinb). 2012; 109 ([Internet]. Nature Publishing Group; Available from:): 90-95
        • Warren J.
        • Reboussin R.
        • Hazelwood R.R.
        • Cummings A.
        • Gibbs N.
        • Trumbetta S.
        Crime scene and distance correlates of serial rape.
        J. Quant. Criminol. 1998; 14: 35-60
        • Lundrigan S.
        • Canter D.
        Spatial patterns of serial murder: an analysis of disposal site location choice.
        Behav. Sci. Law. 2001; 19: 595-610
        • Lundrigan S.
        • Canter D.
        A multivariate analysis of serial murderers’ disposal site location choice.
        J. Environ. Psychol. 2001; 21: 423-432
        • Gymrek M.
        • McGuire A.L.
        • Golan D.
        • Halperin E.
        • Erlich Y.
        Identifying personal genomes by surname inference.
        Science. 2013; 80
        • Neuhuber F.
        • Klausriegler E.
        • Kreindl G.
        • Zahrer W.
        • Dunkelmann B.
        • Pickrahn I.
        • et al.
        The efficiency of Y-chromosome markers in forensic trace analysis and their inclusion in the Austrian National DNA Database.
        Forensic Sci Int Genet Suppl Ser. 2013;
        • Roewer L.
        • Krawczak M.
        • Willuweit S.
        • Nagy M.
        • Alves C.
        • Amorim A.
        • et al.
        Online reference database of European Y-chromosomal short tandem repeat (STR) haplotypes.
        Forensic Sci. Int. 2001; 118: 106-113
        • Jeanguenat Amy
        Y-STR testing: enhancing sexual assault and cold case workflows.
        SAKI, Sex Assault Kit Initiat. 2018; 2
        • Kim J.
        • Mammo D.
        • Siegel M.B.
        • Katsanis S.H.
        Policy implications for familial searching.
        Investig. Genet. 2011;