Highlights
- •Development of new targeted bisulfite MPS assays for age estimation from semen.
- •Bisulfite multiplex PCR design targeting 13 or 5 age markers.
- •Inter-laboratory validation showed stable and accurate DNA methylation quantification.
- •Robust results with 50 ng DNA input at bisulfite conversion level.
Abstract
Keywords
1. Introduction
- Bell J.T.
- Tsai P.-C.
- Yang T.-P.
- Pidsley R.
- Nisbet J.
- Glass D.
- Mangino M.
- Zhai G.
- Zhang F.
- Valdes A.
- Shin S.-Y.
- Dempster E.L.
- Murray R.M.
- Grundberg E.
- Hedman A.K.
- Nica A.
- Small K.S.
- Dermitzakis E.T.
- McCarthy M.I.
- Mill J.
- Spector T.D.
- Deloukas P.
Infinium MethylationEPIC Kit, (n.d.). https://emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html?langsel=/at/ (accessed 23 October 2020).
- Pisarek A.
- Pośpiech E.
- Heidegger A.
- Xavier C.
- Papież A.
- Piniewska-Róg D.
- Kalamara V.
- Potabattula R.
- Bochenek M.
- Sikora-Polaczek M.
- Macur A.
- Woźniak A.
- Janeczko J.
- Phillips C.
- Haaf T.
- Polańska J.
- Parson W.
- Kayser M.
- Branicki W.
- Pisarek A.
- Pośpiech E.
- Heidegger A.
- Xavier C.
- Papież A.
- Piniewska-Róg D.
- Kalamara V.
- Potabattula R.
- Bochenek M.
- Sikora-Polaczek M.
- Macur A.
- Woźniak A.
- Janeczko J.
- Phillips C.
- Haaf T.
- Polańska J.
- Parson W.
- Kayser M.
- Branicki W.
- Pisarek A.
- Pośpiech E.
- Heidegger A.
- Xavier C.
- Papież A.
- Piniewska-Róg D.
- Kalamara V.
- Potabattula R.
- Bochenek M.
- Sikora-Polaczek M.
- Macur A.
- Woźniak A.
- Janeczko J.
- Phillips C.
- Haaf T.
- Polańska J.
- Parson W.
- Kayser M.
- Branicki W.
Gene symbol | CpG ID | GRCh38 position | Amp. size [bp] | DNA strand | Primer sequences (5′–3′) | ET-13 multiplex | Conc. ET-13 [µM] | Conc. ET-5 [µM] |
---|---|---|---|---|---|---|---|---|
SYT7 | cg17147820 | chr11:61554783 | 75 | + | F: GGGGATTTAGGAATAAAGTAGGG R: ATACATAACCCCATCCCCCTCTACCTA | 7-plex | 0.48 | – |
TUBB3 | cg18701351 | chr16:89921897 | 109 | + | F: GGGAGTTGTTTTTTGGTAGGG R: CAAAACAACCAACTCCTACT | 0.24 | – | |
SH2B2 | cg00018181 | chr7:102288444 | 125 | + | F: TTTTGGGGGTTTTAGAGATAGT R: CTAAAAACATTCAACCAAACAACATC | 1.38 | 1 | |
ARHGEF17 | cg09855959 | chr11:73311506 | 128 | + | F: AGTTAGGATTAGATTGGTAGTTTGT R: ACAAAAAAACCAACAAAAATTAATAACTCA | 0.8 | – | |
EXOC3 | cg10528482 | chr5:525656 | 173 | + | F: AGGGGTTTGGTTTTAATGTTATT R: CCCAAAATAAAAACAAACAACTCAAAATC | 1.18 | 1 | |
GALR2 | cg07909178 | chr17:76077795 | 179 | + | F: GTTATTAGGAAAGAGGGTTGATTATATT R: CCTATCACACACCAAAACACAA | 0.32 | 0.4 | |
PPP2R2C | cg02766173 | chr4:6473455 | 242 | + | F: TTTTTTGGTAATTAGTTTGGTATATAGTGG R: TACACTTACCCCTCCCAAACA | 0.6 | – | |
TBX4 | cg19862839 | chr17:61466365 | 78 | – | F: GAGGGGTTTGAAGTTAAGGAGAATATG R: ACTTTAAAAACAAACCATTACCTACTATAT | 6-plex | 1 | – |
PALM | cg17704154 | chr19:718608 | 98 | – | F: AGGTATTATTTAGGGGGAGAGGAG R: ATCCCTTCCCACCCCAAATTA | 0.8 | – | |
IFITM2 | cg01886988 | chr11:312560 | 137 | + | F: GGATTTAGATATAGTTTGGTTTAAGTGG R: CCTTACCCTTACTTAAAATCCCTACT | 0.2 | 0.2 | |
NOX4/FOLH1B/ LOC729960 | cg06979108/no ID | chr11:89589683/ chr11:49251356 | 194 | + | F: TAGTTATTTGAGTGAAGTGTGTTGG R: ACCTCCCAAAATACTAAATTACTC | 0.4 | 0.2 | |
TTC7B | cg06304190 | chr14:90817262 | 167 | + | F: GGGTTTTTTGTTTTGGTTATTTAGATTG R: AAACTCTCTCAAACCAAAAATTTTATT | 0.6 | – | |
LOC401324 | cg12837463 | chr7:35260617 | 138 | + | F: AGGGTTGGATTTTTTTTTTTTAATTTATGT R: AAACCTCTAATACAATACCTAACACAT | 0.4 | – |
- Pisarek A.
- Pośpiech E.
- Heidegger A.
- Xavier C.
- Papież A.
- Piniewska-Róg D.
- Kalamara V.
- Potabattula R.
- Bochenek M.
- Sikora-Polaczek M.
- Macur A.
- Woźniak A.
- Janeczko J.
- Phillips C.
- Haaf T.
- Polańska J.
- Parson W.
- Kayser M.
- Branicki W.
Gene symbol | CpG ID | GRCh38 position |
---|---|---|
SH2B2 | no ID | chr7:102288454 |
EXOC3 | no ID | chr5:525617 |
GALR2 | no ID | chr17:76077680 |
GALR2 | no ID | chr17:76077748 |
IFITM2 | no ID | chr11:312518 |
NOX4/FOLH1B/LOC729960 | cg06979108/no ID | chr11:89589683/ chr11:49251356 |
2. Material and methods
2.1 Age markers
- Pisarek A.
- Pośpiech E.
- Heidegger A.
- Xavier C.
- Papież A.
- Piniewska-Róg D.
- Kalamara V.
- Potabattula R.
- Bochenek M.
- Sikora-Polaczek M.
- Macur A.
- Woźniak A.
- Janeczko J.
- Phillips C.
- Haaf T.
- Polańska J.
- Parson W.
- Kayser M.
- Branicki W.
- Pisarek A.
- Pośpiech E.
- Heidegger A.
- Xavier C.
- Papież A.
- Piniewska-Róg D.
- Kalamara V.
- Potabattula R.
- Bochenek M.
- Sikora-Polaczek M.
- Macur A.
- Woźniak A.
- Janeczko J.
- Phillips C.
- Haaf T.
- Polańska J.
- Parson W.
- Kayser M.
- Branicki W.
2.2 Concordance samples, stains and DNA methylation standards
Qiagen, Isolation of genomic DNA from sperm using the QIAamp® DNA Mini Kit; protocol 2 - (EN), (n.d.). https://www.qiagen.com/us/resources/resourcedetail?id=5f0e4e08-d405–42d9-acf6–73eaaa52190c&lang=en, (accessed 2 February 2021).
2.3 Assay development and protocols
- Heidegger A.
- Xavier C.
- Niederstätter H.
- de la Puente M.
- Pośpiech E.
- Pisarek A.
- Kayser M.
- Branicki W.
- Parson W.
- Woźniak A.
- Heidegger A.
- Piniewska-Róg D.
- Pośpiech E.
- Xavier C.
- Pisarek A.
- Kartasińska E.
- Boroń M.
- Freire-Aradas A.
- Wojtas M.
- de la Puente M.
- Niederstätter H.
- Płoski R.
- Spólnicka M.
- Kayser M.
- Phillips C.
- Parson W.
- Branicki W.
2.3.1 Bisulfite conversion
2.3.2 ET-13: two multiplex PCR approach
2.3.3 ET-5: one multiplex PCR assay
2.3.4 Library preparation
2.3.5 Massively parallel sequencing and data analysis
- Pisarek A.
- Pośpiech E.
- Heidegger A.
- Xavier C.
- Papież A.
- Piniewska-Róg D.
- Kalamara V.
- Potabattula R.
- Bochenek M.
- Sikora-Polaczek M.
- Macur A.
- Woźniak A.
- Janeczko J.
- Phillips C.
- Haaf T.
- Polańska J.
- Parson W.
- Kayser M.
- Branicki W.
(R Foundation for Statistical Computing) R Core Team, R: A Language and Environment for Statistical Computing, (2019). https://www.r-project.org.
2.4 Validation framework
2.5 Species specificity testing
3. Results
3.1 Development and inter-laboratory validation of the 13-marker enhanced tool for age estimation from semen (ET-13)
- Pisarek A.
- Pośpiech E.
- Heidegger A.
- Xavier C.
- Papież A.
- Piniewska-Róg D.
- Kalamara V.
- Potabattula R.
- Bochenek M.
- Sikora-Polaczek M.
- Macur A.
- Woźniak A.
- Janeczko J.
- Phillips C.
- Haaf T.
- Polańska J.
- Parson W.
- Kayser M.
- Branicki W.
3.1.1 Performance evaluation

3.1.2 Reproducibility

3.1.3 Sensitivity

3.1.4 Concordance and “mock” casework samples

Sample | Run | Tool | Concordance [years] | Stains [years] |
---|---|---|---|---|
Sample 1 | Lab 1 | ET-13 | 37.5 | 37.7 |
(33 years) | Lab 2 | ET-13 | 41.2 | 39.4 |
Lab 5 | ET-13 | 38.7 | 35.7 | |
Lab 1 | ET-5 | 38.9 | 40.1 | |
Sample 2 | Lab 1 | ET-13 | 39.1 | 40.3 |
(42 years) | Lab 3 | ET-13 | 42.7 | 42* |
Lab 4 | ET-13 | 38.6 | 38.6 | |
Lab 1 | ET-5 | 39.4 | 41 |
3.1.5 Species specificity
3.2 Development and performance evaluation of the five-marker enhanced tool for age estimation from semen (ET-5)
4. Discussion
- Bock C.
- Halbritter F.
- Carmona F.J.
- Tierling S.
- Datlinger P.
- Assenov Y.
- Berdasco M.
- Bergmann A.K.
- Booher K.
- Busato F.
- Campan M.
- Dahl C.
- Dahmcke C.M.
- Diep D.
- Fernández A.F.
- Gerhauser C.
- Haake A.
- Heilmann K.
- Holcomb T.
- Hussmann D.
- Ito M.
- Kläver R.
- Kreutz M.
- Kulis M.
- Lopez V.
- Nair S.S.
- Paul D.S.
- Plongthongkum N.
- Qu W.
- Queirós A.C.
- Reinicke F.
- Sauter G.
- Schlomm T.
- Statham A.
- Stirzaker C.
- Strogantsev R.
- Urdinguio R.G.
- Walter K.
- Weichenhan D.
- Weisenberger D.J.
- Beck S.
- Clark S.J.
- Esteller M.
- Ferguson-Smith A.C.
- Fraga M.F.
- Guldberg P.
- Hansen L.L.
- Laird P.W.
- Martín-Subero J.I.
- Nygren A.O.H.
- Peist R.
- Plass C.
- Shames D.S.
- Siebert R.
- Sun X.
- Tost J.
- Walter J.
- Zhang K.
- Heidegger A.
- Xavier C.
- Niederstätter H.
- de la Puente M.
- Pośpiech E.
- Pisarek A.
- Kayser M.
- Branicki W.
- Parson W.
- Woźniak A.
- Heidegger A.
- Piniewska-Róg D.
- Pośpiech E.
- Xavier C.
- Pisarek A.
- Kartasińska E.
- Boroń M.
- Freire-Aradas A.
- Wojtas M.
- de la Puente M.
- Niederstätter H.
- Płoski R.
- Spólnicka M.
- Kayser M.
- Phillips C.
- Parson W.
- Branicki W.
- Leontiou C.A.
- Hadjidaniel M.D.
- Mina P.
- Antoniou P.
- Ioannides M.
- Patsalis P.C.
- Kint S.
- De Spiegelaere W.
- De Kesel J.
- Vandekerckhove L.
- Van Criekinge W.
- Pisarek A.
- Pośpiech E.
- Heidegger A.
- Xavier C.
- Papież A.
- Piniewska-Róg D.
- Kalamara V.
- Potabattula R.
- Bochenek M.
- Sikora-Polaczek M.
- Macur A.
- Woźniak A.
- Janeczko J.
- Phillips C.
- Haaf T.
- Polańska J.
- Parson W.
- Kayser M.
- Branicki W.
- Pisarek A.
- Pośpiech E.
- Heidegger A.
- Xavier C.
- Papież A.
- Piniewska-Róg D.
- Kalamara V.
- Potabattula R.
- Bochenek M.
- Sikora-Polaczek M.
- Macur A.
- Woźniak A.
- Janeczko J.
- Phillips C.
- Haaf T.
- Polańska J.
- Parson W.
- Kayser M.
- Branicki W.
- Spólnicka M.
- Zbieć-Piekarska R.
- Karp M.
- Machnicki M.M.
- Własiuk P.
- Makowska Ż.
- Pięta A.
- Gambin T.
- Gasperowicz P.
- Branicki W.
- Giannopoulos K.
- Stokłosa T.
- Płoski R.
- Spólnicka M.
- Piekarska R.Z.
- Jaskuła E.
- Basak G.W.
- Jacewicz R.
- Pięta A.
- Makowska Ż.
- Jedrzejczyk M.
- Wierzbowska A.
- Pluta A.
- Robak T.
- Berent J.
- Branicki W.
- Jędrzejczak W.
- Lange A.
- Płoski R.
- Horvath S.
- Gurven M.
- Levine M.E.
- Trumble B.C.
- Kaplan H.
- Allayee H.
- Ritz B.R.
- Chen B.
- Lu A.T.
- Rickabaugh T.M.
- Jamieson B.D.
- Sun D.
- Li S.
- Chen W.
- Quintana-Murci L.
- Fagny M.
- Kobor M.S.
- Tsao P.S.
- Reiner A.P.
- Edlefsen K.L.
- Absher D.
- Assimes T.L.
- Horvath S.
- Gurven M.
- Levine M.E.
- Trumble B.C.
- Kaplan H.
- Allayee H.
- Ritz B.R.
- Chen B.
- Lu A.T.
- Rickabaugh T.M.
- Jamieson B.D.
- Sun D.
- Li S.
- Chen W.
- Quintana-Murci L.
- Fagny M.
- Kobor M.S.
- Tsao P.S.
- Reiner A.P.
- Edlefsen K.L.
- Absher D.
- Assimes T.L.
- Xavier C.
- de la Puente M.
- Mosquera-Miguel A.
- Freire-Aradas A.
- Kalamara V.
- Vidaki A.
- Gross T.E.
- Revoir A.
- Pośpiech E.
- Kartasińska E.
- Spólnicka M.
- Branicki W.
- Ames C.E.
- Schneider P.M.
- Hohoff C.
- Kayser M.
- Phillips C.
- Parson W.
Funding
Author contributions
Data availability
Acknowledgments
Appendix A. Supplementary material
Supplementary material
Supplementary material
Supplementary material
Supplementary material
Supplementary material
References
- Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population.PLoS Genet. 2012; 81002629https://doi.org/10.1371/journal.pgen.1002629
- DNA methylation age of human tissues and cell types.Genome Biol. 2013; 14: 115https://doi.org/10.1186/gb-2013-14-10-r115
- Genome-wide methylation profiles reveal quantitative views of human aging rates.Mol. Cell. 2013; 49: 359-367https://doi.org/10.1016/j.molcel.2012.10.016
- Recent progress, methods and perspectives in forensic epigenetics.Forensic Sci. Int. Genet. 2018; 37: 180-195https://doi.org/10.1016/j.fsigen.2018.08.008
Infinium MethylationEPIC Kit, (n.d.). https://emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html?langsel=/at/ (accessed 23 October 2020).
- A validation study of DNA methylation-based age prediction using semen in forensic casework samples.Leg. Med. 2018; 31: 74-77https://doi.org/10.1016/j.legalmed.2018.01.005
- D. Syndercombe Court, DNA methylation-based age prediction using massively parallel sequencing data and multiple machine learning models.Forensic Sci. Int. Genet. 2018; 37: 215-226https://doi.org/10.1016/j.fsigen.2018.09.003
- Proof of concept study of age-dependent DNA methylation markers across different tissues by massive parallel sequencing.Forensic Sci. Int. Genet. 2018; 36: 152-159https://doi.org/10.1016/j.fsigen.2018.07.007
- Aging of blood can be tracked by DNA methylation changes at just three CpG sites.Genome Biol. 2014; 15: 24https://doi.org/10.1186/gb-2014-15-2-r24
- Development of a forensically useful age prediction method based on DNA methylation analysis.Forensic Sci. Int. Genet. 2015; 17: 173-179https://doi.org/10.1016/j.fsigen.2015.05.001
- A novel strategy for forensic age prediction by DNA methylation and support vector regression model.Sci. Rep. 2015; 5: 17788https://doi.org/10.1038/srep17788
- DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing.Forensic Sci. Int. Genet. 2017; 28: 225-236https://doi.org/10.1016/j.fsigen.2017.02.009
- Forensic DNA methylation profiling from minimal traces: How low can we go?.Forensic Sci. Int. Genet. 2018; 33: 17-23https://doi.org/10.1016/j.fsigen.2017.11.004
- DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples.Forensic Sci. Int. Genet. 2019; 38: 1-8https://doi.org/10.1016/j.fsigen.2018.09.010
- Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception.Epigenetics Chromatin. 2018; 11: 25https://doi.org/10.1186/s13072-018-0191-3
- Epigenetic age signatures in the forensically relevant body fluid of semen: a preliminary study.Forensic Sci. Int. Genet. 2015; 19: 28-34https://doi.org/10.1016/j.fsigen.2015.05.014
- Methylation‐based age prediction using pyrosequencing platform from seminal stains in han chinese males.J. Forensic Sci. 2020; 65: 610-619https://doi.org/10.1111/1556-4029.14186
- Paternal germ line aging: DNA methylation age prediction from human sperm.BMC Genom. 2018; 19: 763https://doi.org/10.1186/s12864-018-5153-4
- Epigenetic age prediction in semen – marker selection and model development.Aging. 2021; 13: 19145-19164https://doi.org/10.18632/aging.203399
Qiagen, Isolation of genomic DNA from sperm using the QIAamp® DNA Mini Kit; protocol 2 - (EN), (n.d.). https://www.qiagen.com/us/resources/resourcedetail?id=5f0e4e08-d405–42d9-acf6–73eaaa52190c&lang=en, (accessed 2 February 2021).
- Development and optimization of the VISAGE basic prototype tool for forensic age estimation.Forensic Sci. Int. Genet. 2020; 48102322https://doi.org/10.1016/j.fsigen.2020.102322
- Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones.Aging. 2021; 13: 6459-6484https://doi.org/10.18632/aging.202783
- BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes.Nucleic Acids Res. 2005; 33 (e9–e9): 9https://doi.org/10.1093/nar/gni012
- Fast and accurate alignment of long bisulfite-seq reads.Bioinformatics. 2014; 00: 1-2
- The sequence alignment/map format and SAMtools.Bioinformatics. 2009; 25: 2078-2079https://doi.org/10.1093/bioinformatics/btp352
- Integrative genomics viewer.Nat. Biotechnol. 2011; 29: 24-26https://doi.org/10.1038/nbt.1754
(R Foundation for Statistical Computing) R Core Team, R: A Language and Environment for Statistical Computing, (2019). https://www.r-project.org.
- “GenderPlex” a PCR multiplex for reliable gender determination of degraded human DNA samples and complex gender constellations.Int. J. Leg. Med. 2009; 123: 459-464https://doi.org/10.1007/s00414-008-0301-z
- A modular real-time PCR concept for determining the quantity and quality of human nuclear and mitochondrial DNA.Forensic Sci. Int. Genet. 2007; 1: 29-34https://doi.org/10.1016/j.fsigen.2006.10.007
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res. 1997; 25: 3389-3402https://doi.org/10.1093/nar/25.17.3389
- Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip.Genom. Data. 2016; 9: 22-24https://doi.org/10.1016/j.gdata.2016.05.012
- Quantitative comparison of DNA methylation assays for biomarker development and clinical applications.Nat. Biotechnol. 2016; 34: 726-737https://doi.org/10.1038/nbt.3605
- A collaborative exercise on DNA methylation based body fluid typing.Electrophoresis. 2016; 37: 2759-2766https://doi.org/10.1002/elps.201600256
- Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing.Sci. Rep. 2019; 9: 8862https://doi.org/10.1038/s41598-019-45197-w
- Bisulfite conversion of DNA: performance comparison of different kits and methylation quantitation of epigenetic biomarkers that have the potential to be used in non-invasive prenatal testing.PLoS One. 2015; 100135058https://doi.org/10.1371/journal.pone.0135058
- Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR.PLoS One. 2018; 130199091https://doi.org/10.1371/journal.pone.0199091
- DNA methylation age is accelerated in alcohol dependence.Transl. Psychiatry. 2018; 8: 182https://doi.org/10.1038/s41398-018-0233-4
- DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies.Clin. Epigenetics. 2015; 7: 113https://doi.org/10.1186/s13148-015-0148-3
- DNA methylation signature in blood does not predict calendar age in patients with chronic lymphocytic leukemia but may alert to the presence of disease.Forensic Sci. Int. Genet. 2018; 34: e15-e17https://doi.org/10.1016/j.fsigen.2018.02.004
- Donor age and C1orf132/MIR29B2C determine age-related methylation signature of blood after allogeneic hematopoietic stem cell transplantation.Clin. Epigenetics. 2016; 8: 93https://doi.org/10.1186/s13148-016-0257-7
- An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease.Genome Biol. 2016; 17: 171https://doi.org/10.1186/s13059-016-1030-0
- Epigenetic clocks may come out of rhythm—implications for the estimation of chronological age in forensic casework.Int. J. Leg. Med. 2020; 134: 2215-2228https://doi.org/10.1007/s00414-020-02375-0
- Independent validation of DNA-based approaches for age prediction in blood.Forensic Sci. Int. Genet. 2017; 29: 250-256https://doi.org/10.1016/j.fsigen.2017.04.020
- Infant’s DNA methylation age at birth and epigenetic aging accelerators.Biomed. Res. Int. 2016; 2016: 1-10https://doi.org/10.1155/2016/4515928
- Novel age-associated DNA methylation changes and epigenetic age acceleration in middle-aged African Americans and whites.Clin. Epigenetics. 2019; 11: 119https://doi.org/10.1186/s13148-019-0722-1
- Vasomotor symptoms and menopause: findings from the study of women’s health across the nation.Obstet. Gynecol. Clin. North Am. 2011; 38: 489-501https://doi.org/10.1016/j.ogc.2011.05.006
- Development and validation of the VISAGE AmpliSeq basic tool to predict appearance and ancestry from DNA.Forensic Sci. Int. Genet. 2020; 48102336https://doi.org/10.1016/j.fsigen.2020.102336
- Evaluation of the VISAGE basic tool for appearance and ancestry prediction using powerSeq chemistry on the MiSeq FGx system.Genes. 2020; : 708https://doi.org/10.3390/genes11060708
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy