Highlights
- •International DNA kinship matching procedure for missing person cases and DVI.
- •Worldwide allele frequencies to evaluate kinship when ancestry is unknown.
- •Tailored cutoff log10LR thresholds determined for the 10 most common scenarios.
- •Interpretation tables to evaluate the match (report, reject or require more data).
Abstract
Keywords
1. Introduction
Recommendations on the Use of DNA for the Identification of Missing Persons and Unidentified Human Remains by the INTERPOL DNA Monitoring Expert Group, (2017). 〈http://www.interpol.int〉.
- Butler J.M.
- Coble M.D.
- Buckleton J.
- Butler J.M.
- Egeland T.
- Fimmers R.
- Gill P.
- Gusmão L.
- Guttman B.
- Krawczak M.
- Morling N.
- Parson W.
- Pinto N.
- Schneider P.M.
- Sherry S.T.
- Willuweit S.
- Prinz M.
- Morimoto C.
- Tsujii H.
- Manabe S.
- Fujimoto S.
- Hirai E.
- Hamano Y.
- Tamaki K.
- Coble M.D.
- Buckleton J.
- Butler J.M.
- Egeland T.
- Fimmers R.
- Gill P.
- Gusmão L.
- Guttman B.
- Krawczak M.
- Morling N.
- Parson W.
- Pinto N.
- Schneider P.M.
- Sherry S.T.
- Willuweit S.
- Prinz M.
- Henn B.M.
- Hon L.
- Macpherson J.M.
- Eriksson N.
- Saxonov S.
- Pe’er I.
- Mountain J.L.
- Tytgat O.
- Gansemans Y.
- Weymaere J.
- Rubben K.
- Deforce D.
- Van Nieuwerburgh F.
- Dou J.
- Sun B.
- Sim X.
- Hughes J.D.
- Reilly D.F.
- Tai E.S.
- Liu J.
- Wang C.
- van Dongen C.J.
- Slooten K.
- Slagter M.
- Burgers W.
- Wiegerinck W.
- Hines D.Z.C.
- Vennemeyer M.
- Amory S.
- Huel R.L.M.
- Hanson I.
- Katzmarzyk C.
- Parsons T.J.
- Ge J.
- Budowle B.
- Vigeland M.D.
- Marsico F.L.
- Herrera Pi ̃nero M.
- Egeland T.
- Brustad H.K.
- Colucci M.
- Jobling M.A.
- Sheehan N.A.
- Egeland T.
2. Material and methods
2.1 Optimal determination of ϴ for LR computation when ancestry is unknown
- Oldt R.F.
- Kanthaswamy S.
- Oldt R.F.
- Kanthaswamy S.
2.2 STR data simulations for kinship construction
- van Dongen C.J.
- Slooten K.
- Slagter M.
- Burgers W.
- Wiegerinck W.


2.3 Likelihood ratio calculation on simulated pedigrees
- van Dongen C.J.
- Slooten K.
- Slagter M.
- Burgers W.
- Wiegerinck W.
- Chernomoretz A.
- Balparda M.
- Grutta L.L.
- Calabrese A.
- Martinez G.
- Escobar M.S.
- Sibilla G.
2.4 log10LR distributions of related and unrelated pedigrees and determination of cutoff
2.5 Validation of interpretation tables with seven reference population datasets
- Al-Eitan L.N.
- Darwish N.N.
- Hakooz N.M.
- Dajani R.B.
3. Results & discussion
3.1 Generation of Worldwide allele frequencies
- Bodner M.
- Bastisch I.
- Butler J.M.
- Fimmers R.
- Gill P.
- Gusmão L.
- Morling N.
- Phillips C.
- Prinz M.
- Schneider P.M.
- Parson W.
Clusters | Number of reference populations | Number of individuals | Weight in Worldwide population |
---|---|---|---|
Africa | 36 | 7,344 | 4.01% |
Asian | 72 | 16,522 | 9.03% |
AusAb | 17 | 15,637 | 8.54% |
Caucn | 151 | 82,579 | 45.13% |
Hispc | 39 | 30,463 | 16.65% |
IndPk | 26 | 3,276 | 1.79% |
Inuit | 2 | 209 | 0.11% |
NatAm | 22 | 2,785 | 1.52% |
Polyn | 4 | 24,184 | 13.22% |
Total | 369 | 182,999 | 100.00% |
- Delest A.
- Godfrin D.
- Chantrel Y.
- Ulus A.
- Vannier J.
- Faivre M.
- Hollard C.
- Laurent F.-X.
- Laurent F.X.
- Ausset L.
- Clot M.
- Jullien S.
- Chantrel Y.
- Hollard C.
- Pene L.
3.2 Determination of an appropriate ϴ value for LR calculation when ancestry is unknown
- Ochoa A.
- Storey J.D.
3.3 Comparison of log10LR distributions of the 10 scenarios

- Ge J.
- Budowle B.
3.4 From log10LR distribution curves to interpretation tables
- Slooten K.
- Ge J.
- Budowle B.
- Ge J.
- Budowle B.
- •A “red zone” defined by the lowest 1/5000 values of the related distribution curve and all log10LR values below.
- •An “orange zone” defined by an average number of false positive matches of 50 per MP or above, in a database search of 100,000 UHR profiles.
- •A “green zone” defined by an average number of false positive matches below 50 per MP, in a database search of 100,000 UHR profiles.
- •A “grey zone” defined by log10LR values where related and unrelated distribution curves do not overlap, in a database search of 100,000 UHR profiles.

3.5 Suggested workflow to deal with potential candidates in forensic DNA databases when performing international DNA kinship matching

Recommendations on the Use of DNA for the Identification of Missing Persons and Unidentified Human Remains by the INTERPOL DNA Monitoring Expert Group, (2017). 〈http://www.interpol.int〉.
- Machado P.
- Gusmão L.
- Conde-Sousa E.
- Pinto N.
- Morimoto C.
- Tsujii H.
- Manabe S.
- Fujimoto S.
- Hirai E.
- Hamano Y.
- Tamaki K.
3.6 Validating the performance of the interpretation tables using individuals from several continental populations
- Al-Eitan L.N.
- Darwish N.N.
- Hakooz N.M.
- Dajani R.B.
AVERAGE NUMBER OF FALSE POSITIVE MATCHES PER MISSING PERSON | RATE OF FALSE NEGATIVE (BASED ON 10,000 RELATED MATCHES) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scenarios | Scenarios | ||||||||||||||||||||
A | B | C | D | E | F | G | H | I | J | A | B | C | D | E | F | G | H | I | J | ||
Threshold: log10LR ≥ 1 | Threshold: log10LR ≥ 1 | ||||||||||||||||||||
African-American | 0 | 5 | 199 | 178 | 13 | 106 | 177 | 24 | 5 | 112 | African-American | 0.000% | 0.000% | 0.000% | 0.008% | 0.000% | 0.042% | 0.300% | 0.008% | 0.000% | 0.100% |
Asian | 0 | 7 | 215 | 192 | 16 | 112 | 192 | 31 | 6 | 141 | Asian | 0.000% | 0.000% | 0.000% | 0.000% | 0.000% | 0.042% | 0.225% | 0.008% | 0.000% | 0.050% |
Caucasian | 0 | 10 | 245 | 209 | 21 | 121 | 224 | 36 | 8 | 159 | Caucasian | 0.000% | 0.000% | 0.042% | 0.017% | 0.000% | 0.058% | 0.483% | 0.083% | 0.000% | 0.117% |
Hispanic | 0 | 6 | 208 | 185 | 14 | 110 | 185 | 29 | 5 | 135 | Hispanic | 0.000% | 0.000% | 0.033% | 0.000% | 0.000% | 0.092% | 0.400% | 0.025% | 0.000% | 0.125% |
Threshold: log10LR ≥ 2 | Threshold: log10LR ≥ 2 | ||||||||||||||||||||
African-American | 0 | 2 | 76 | 64 | 3 | 11 | 13 | 3 | 3 | 16 | African-American | 0.000% | 0.000% | 0.592% | 0.617% | 0.000% | 0.333% | 1.258% | 0.067% | 0.000% | 0.750% |
Asian | 0 | 3 | 85 | 71 | 5 | 15 | 18 | 5 | 4 | 20 | Asian | 0.000% | 0.000% | 0.667% | 0.525% | 0.008% | 0.442% | 1.058% | 0.150% | 0.008% | 0.450% |
Caucasian | 0 | 4 | 99 | 78 | 6 | 21 | 25 | 7 | 6 | 28 | Caucasian | 0.000% | 0.000% | 1.117% | 0.975% | 0.017% | 0.683% | 1.575% | 0.225% | 0.008% | 0.917% |
Hispanic | 0 | 2 | 80 | 68 | 4 | 13 | 16 | 4 | 4 | 18 | Hispanic | 0.000% | 0.000% | 0.983% | 0.975% | 0.058% | 0.558% | 1.675% | 0.183% | 0.000% | 0.842% |
Threshold: log10LR ≥ 3 | Threshold: log10LR ≥ 3 | ||||||||||||||||||||
African-American | 0 | 1 | 12 | 11 | 0 | 1 | 1 | 0 | 0 | 1 | African-American | 0.000% | 0.033% | 6.100% | 6.892% | 0.200% | 1.592% | 3.783% | 0.342% | 0.017% | 2.775% |
Asian | 0 | 1 | 16 | 13 | 1 | 2 | 2 | 1 | 2 | 3 | Asian | 0.000% | 0.058% | 8.392% | 7.617% | 0.275% | 1.942% | 3.742% | 0.625% | 0.200% | 2.600% |
Caucasian | 0 | 2 | 20 | 18 | 2 | 2 | 3 | 2 | 3 | 4 | Caucasian | 0.011% | 0.125% | 10.875% | 11.267% | 0.433% | 2.908% | 5.233% | 0.933% | 0.075% | 4.000% |
Hispanic | 0 | 1 | 14 | 12 | 1 | 1 | 1 | 0 | 1 | 1 | Hispanic | 0.006% | 0.058% | 9.817% | 9.908% | 0.625% | 2.450% | 5.325% | 0.683% | 0.058% | 4.250% |
Threshold: log10LR ≥ 4 | Threshold: log10LR ≥ 4 | ||||||||||||||||||||
African-American | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | African-American | 0.114% | 1.050% | 23.350% | 24.142% | 1.358% | 5.117% | 9.025% | 1.342% | 0.475% | 8.717% |
Asian | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Asian | 0.170% | 1.017% | 28.883% | 27.975% | 2.175% | 6.467% | 9.667% | 2.400% | 1.000% | 9.383% |
Caucasian | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Caucasian | 0.336% | 2.183% | 34.433% | 34.817% | 2.475% | 9.317% | 12.825% | 2.817% | 1.042% | 13.075% |
Hispanic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Hispanic | 0.245% | 1.642% | 32.475% | 31.317% | 2.567% | 7.633% | 12.258% | 2.383% | 1.008% | 13.417% |
Threshold: log10LR ≥ 5 | Threshold: log10LR ≥ 5 | ||||||||||||||||||||
African-American | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | African-American | 1.171% | 6.359% | 47.608% | 48.167% | 5.317% | 12.125% | 18.467% | 3.825% | 2.833% | 20.125% |
Asian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Asian | 1.670% | 8.631% | 54.150% | 52.633% | 6.875% | 14.817% | 20.175% | 6.325% | 4.408% | 22.058% |
Caucasian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Caucasian | 2.376% | 11.489% | 61.475% | 61.933% | 8.625% | 18.808% | 25.283% | 8.292% | 5.600% | 28.367% |
Hispanic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Hispanic | 2.127% | 9.926% | 59.233% | 58.392% | 8.500% | 17.400% | 23.883% | 6.467% | 5.167% | 28.567% |
Tailored thresholds determined in this manuscript | Tailored thresholds determined in this manuscript | ||||||||||||||||||||
African-American | 0 | 2 | 19 | 18 | 0 | 9 | 25 | 5 | 3 | 10 | African-American | 0.000% | 0.000% | 0.000% | 0.000% | 0.000% | 0.000% | 0.058% | 0.000% | 0.000% | 0.033% |
Asian | 0 | 4 | 28 | 23 | 2 | 16 | 39 | 8 | 5 | 15 | Asian | 0.000% | 0.000% | 0.000% | 0.000% | 0.000% | 0.000% | 0.050% | 0.000% | 0.000% | 0.000% |
Caucasian | 0 | 5 | 30 | 28 | 3 | 19 | 44 | 10 | 6 | 17 | Caucasian | 0.000% | 0.000% | 0.017% | 0.008% | 0.000% | 0.000% | 0.100% | 0.000% | 0.000% | 0.050% |
Hispanic | 0 | 3 | 22 | 21 | 1 | 13 | 29 | 6 | 4 | 12 | Hispanic | 0.000% | 0.000% | 0.017% | 0.000% | 0.000% | 0.000% | 0.142% | 0.000% | 0.000% | 0.000% |
- Delest A.
- Godfrin D.
- Chantrel Y.
- Ulus A.
- Vannier J.
- Faivre M.
- Hollard C.
- Laurent F.-X.
4. Conclusion
- Slooten K.
- Marsico F.L.
- Vigeland M.D.
- Egeland T.
- Piñero M.H.
- Bodner M.
- Bastisch I.
- Butler J.M.
- Fimmers R.
- Gill P.
- Gusmão L.
- Morling N.
- Phillips C.
- Prinz M.
- Schneider P.M.
- Parson W.
Conflict of interest
Acknowledgments
Appendix A. Supplementary material
Supplementary material
Supplementary material
Supplementary material
References
- Declaration from Agnès Coutou, ICRC’s Protection Adviser, at the 2018 U.N.General Assembly’s Human Rights Committee. 2018;
Recommendations on the Use of DNA for the Identification of Missing Persons and Unidentified Human Remains by the INTERPOL DNA Monitoring Expert Group, (2017). 〈http://www.interpol.int〉.
- Forensics and mitochondrial DNA: applications, debates, and foundations.Annu. Rev. Genom. Hum. Genet. 2003; 4: 119-141https://doi.org/10.1146/annurev.genom.4.070802.110352
- The future of forensic DNA analysis.Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015; 370https://doi.org/10.1098/rstb.2014.0252
- Forensic use of Y-chromosome DNA: a general overview.Hum. Genet. 2017; 136: 621-635https://doi.org/10.1007/s00439-017-1776-9
- The MASTiFF panel-a versatile multiple-allele SNP test for forensics.Int. J. Leg. Med. 2020; 134: 441-450https://doi.org/10.1007/s00414-019-02233-8
- Les nouvelles technologies d′analyses ADN au service des enquêtes judiciaires.Médecine/Sci. 2017; 33: 971-978https://doi.org/10.1051/medsci/20173311014
- DNA Commission of the International Society for Forensic Genetics: Recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications.Forensic Sci. Int. Genet. 2016; 25: 191-197https://doi.org/10.1016/j.fsigen.2016.09.002
- Bayesian networks for victim identification on the basis of DNA profiles.Forensic Sci. Int. Genet. Suppl. Ser. 2009; 2: 466-468https://doi.org/10.1016/j.fsigss.2009.08.024
- Validation of DNA-based identification software by computation of pedigree likelihood ratios.Forensic Sci. Int. Genet. 2011; 5: 308-315https://doi.org/10.1016/j.fsigen.2010.06.005
- Familias 3 – extensions and new functionality.Forensic Sci. Int. Genet. 2014; 13: 121-127https://doi.org/10.1016/j.fsigen.2014.07.004
- Development of a software for kinship analysis considering linkage and mutation based on a Bayesian network.Forensic Sci. Int. Genet. 2020; 47102279https://doi.org/10.1016/j.fsigen.2020.102279
- Weight-of-evidence for DNA identification of missing persons and human remains using CODIS.Forensic Sci. Med. Pathol. 2020; 16: 389-394https://doi.org/10.1007/s12024-020-00248-x
- Likelihood ratios for DNA identification.Proc. Natl. Acad. Sci. 1994; 91: 6007-6011https://doi.org/10.1073/pnas.91.13.6007
- Quickly identifying identical and closely related subjects in large databases using genotype data.PLoS One. 2017; 12: 0179106https://doi.org/10.1371/journal.pone.0179106
- Cryptic distant relatives are common in both isolated and cosmopolitan genetic samples.PLOS ONE. 2012; 7e34267https://doi.org/10.1371/journal.pone.0034267
- Rapid, phase-free detection of long identity-by-descent segments enables effective relationship classification.Am. J. Hum. Genet. 2020; 106: 453-466https://doi.org/10.1016/j.ajhg.2020.02.012
- Nanopore sequencing of a forensic STR multiplex reveals loci suitable for single-contributor STR profiling.Genes. 2020; 11https://doi.org/10.3390/genes11040381
- How to estimate kinship.Mol. Ecol. 2018; 27: 4121-4135https://doi.org/10.1111/mec.14833
- Human-genetic ancestry inference and false positives in forensic familial searching.G3 Genes. 2020; 10: 2893-2902https://doi.org/10.1534/g3.120.401473
- Individual identifiability predicts population identifiability in forensic microsatellite markers.Curr. Biol. 2016; 26: 935-942https://doi.org/10.1016/j.cub.2016.01.065
- Estimating kinship in admixed populations.Am. J. Hum. Genet. 2012; 91: 122-138https://doi.org/10.1016/j.ajhg.2012.05.024
- Estimation of kinship coefficient in structured and admixed populations using sparse sequencing data.PLOS Genet. 2017; 13e1007021https://doi.org/10.1371/journal.pgen.1007021
- Bonaparte: application of new software for missing persons program.Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: e119-e120https://doi.org/10.1016/j.fsigss.2011.08.059
- Prioritized sampling of bone and teeth for DNA analysis in commingled cases.Commingled Hum. Remains Methods Recovery Anal. Identif. 2014; : 275-305https://doi.org/10.1016/B978-0-12-405889-7.00013-7
- Pros and cons in the use of SNPs in forensic kinship investigation: a comparative analysis with STRs.Forensic Sci. Int. 2005; 150: 17-21https://doi.org/10.1016/j.forsciint.2004.06.018
Familial DNA Database Search System-Hardware/Software Integration Project, Natl. Inst. Justice. (n.d.). https://nij.ojp.gov/library/publications/familial-dna-database-search-system-hardwaresoftware-integration-project (accessed January 20, 2021).
- Kinship index variations among populations and thresholds for familial searching.PLOS ONE. 2012; 7e37474https://doi.org/10.1371/journal.pone.0037474
- Choosing relatives for DNA identification of missing persons.J. Forensic Sci. 56. 2011; Suppl 1: S23-S28https://doi.org/10.1111/j.1556-4029.2010.01631.x
- Prioritising family members for genotyping in missing person cases: a general approach combining the statistical power of exclusion and inclusion.Forensic Sci. Int. Genet. 2020; 49102376https://doi.org/10.1016/j.fsigen.2020.102376
- Strategies for pairwise searches in forensic kinship analysis.Forensic Sci. Int. Genet. 2021; 54102562https://doi.org/10.1016/j.fsigen.2021.102562
- Expanded CODIS STR allele frequencies - evidence for the irrelevance of race-based DNA databases.Leg. Med. Tokyo Jpn. 2020; 42101642https://doi.org/10.1016/j.legalmed.2019.101642
- pop.STR—an online population frequency browser for established and new forensic STRs.Forensic Sci. Int. Genet. Suppl. Ser. 2009; 2: 361-362https://doi.org/10.1016/j.fsigss.2009.08.178
National Research Council (US) Committee on DNA Forensic Science: An Update, The Evaluation of Forensic DNA Evidence, National Academies Press (US), Washington (DC), 1996. http://www.ncbi.nlm.nih.gov/books/NBK232610/ (accessed January 20, 2021).
- Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Mol. Ecol. Resour. 2010; 10: 564-567https://doi.org/10.1111/j.1755-0998.2010.02847.x
- Choice of population database for forensic DNA profile analysis.Sci. Justice J. Forensic Sci. Soc. 2014; 54: 487-493https://doi.org/10.1016/j.scijus.2014.10.004
- The genetic structure of Native Americans in North America based on the Globalfiler® STRs, Legal Medicine.Leg. Med. Tokyo Jpn. 2016; 23: 49-54https://doi.org/10.1016/j.legalmed.2016.09.007
- Population-specific F values for forensic STR markers: A worldwide survey.Forensic Sci. Int. Genet. 2016; 23: 91-100https://doi.org/10.1016/j.fsigen.2016.03.004
- GENis, an open-source multi-tier forensic DNA information system.Forensic Sci. Int. Rep. 2020; 2100132https://doi.org/10.1016/j.fsir.2020.100132
- DNA identification by pedigree likelihood ratio accommodating population substructure and mutations.Invest. Genet. 2010; 1: 8https://doi.org/10.1186/2041-2223-1-8
BONAPARTE User Manual 4.1.10.
- BoxPlotR: a web tool for generation of box plots.Nat. Methods. 2014; 11: 121-122https://doi.org/10.1038/nmeth.2811
- U.S. population data for 29 autosomal STR loci.Forensic Sci. Int. Genet. 2013; 7: e82-e83https://doi.org/10.1016/j.fsigen.2012.12.004
- Corrigendum to “U.S. Population Data for 29 Autosomal STR Loci” [Forensic Sci. Int. Genet. 7 (2013) e82-e83].Forensic Sci. Int. Genet. 2017; 31: e36-e40https://doi.org/10.1016/j.fsigen.2017.08.011
- Native American population data based on the Globalfiler(®) autosomal STR loci.Forensic Sci. Int. Genet. 2016; 24: e12-e13https://doi.org/10.1016/j.fsigen.2016.06.014
- Population data for 21 autosomal STR loci (GlobalFiler kit) in two Mexican-Mestizo population from the northwest, Mexico.Int. J. Leg. Med. 2019; 133: 781-783https://doi.org/10.1007/s00414-018-1950-1
- Investigation of the forensic GlobalFiler loci in the genetically isolated Circassian subpopulation in Jordan.Gene. 2020; 733144269https://doi.org/10.1016/j.gene.2019.144269
2020 World Population by Country, https://worldpopulationreview.com/.
- Recommendations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on quality control of autosomal Short Tandem Repeat allele frequency databasing (STRidER).Forensic Sci. Int. Genet. 2016; 24: 97-102https://doi.org/10.1016/j.fsigen.2016.06.008
- Characterization of genetic sequence variation of 58 STR loci in four major population groups.Forensic Sci. Int. Genet. 2016; 25: 214-226https://doi.org/10.1016/j.fsigen.2016.09.007
- Length and repeat-sequence variation in 58 STRs and 94 SNPs in two Spanish populations.Forensic Sci. Int. Genet. 2017; 30: 66-70https://doi.org/10.1016/j.fsigen.2017.06.006
- Evaluation of the Illumina(®) Beta Version ForenSeqTM DNA Signature Prep Kit for use in genetic profiling.Forensic Sci. Int. Genet. 2016; 20: 20-29https://doi.org/10.1016/j.fsigen.2015.09.009
- Concordance of the ForenSeqTM system and characterisation of sequence-specific autosomal STR alleles across two major population groups.Forensic Sci. Int. Genet. 2018; 34: 57-61https://doi.org/10.1016/j.fsigen.2017.10.012
- The Danish STR sequence database: duplicate typing of 363 Danes with the ForenSeqTM DNA Signature Prep Kit.Int. J. Leg. Med. 2019; 133: 325-334https://doi.org/10.1007/s00414-018-1854-0
- Sequenced-based French population data from 169 unrelated individuals with Verogen’s ForenSeq DNA signature prep kit.Forensic Sci. Int. Genet. 2020; 47102304https://doi.org/10.1016/j.fsigen.2020.102304
- Automation of library preparation using Illumina ForenSeq kit for routine sequencing of casework samples.Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e415-e417https://doi.org/10.1016/j.fsigss.2017.09.156
- Automation and developmental validation of the ForenSeqTM DNA Signature Preparation kit for high-throughput analysis in forensic laboratories.Forensic Sci. Int. Genet. 2019; 40: 37-45https://doi.org/10.1016/j.fsigen.2019.01.010
- A unified characterization of population structure and relatedness.Genetics. 2017; 206: 2085-2103https://doi.org/10.1534/genetics.116.198424
- Estimating FST and kinship for arbitrary population structures.PLOS Genet. 2021; 17e1009241https://doi.org/10.1371/journal.pgen.1009241
- Likelihood ratio distributions and the (ir)relevance of error rates.Forensic Sci. Int. Genet. 2020; 44102173https://doi.org/10.1016/j.fsigen.2019.102173
- How many familial relationship testing results could be wrong?.PLoS Genet. 2020; 16https://doi.org/10.1371/journal.pgen.1008929
- Evaluation of advanced multiplex short tandem repeat systems in pairwise kinship analysis.Leg. Med. Tokyo Jpn. 2015; 17: 320-325https://doi.org/10.1016/j.legalmed.2015.03.005
- Kinship analysis: assessment of related vs unrelated based on defined pedigrees.Int. J. Leg. Med. 2016; 130: 113-119https://doi.org/10.1007/s00414-015-1290-3
- Set up of cutoff thresholds for kinship determination using SNP loci.Forensic Sci. Int. Genet. 2017; 29: 1-8https://doi.org/10.1016/j.fsigen.2017.03.009
- Improved pairwise kinship analysis using massively parallel sequencing.Forensic Sci. Int. Genet. 2019; 38: 77-85https://doi.org/10.1016/j.fsigen.2018.10.006
- Large scale DNA identification: the ICMP experience.Forensic Sci. Int. Genet. 2019; 38: 236-244https://doi.org/10.1016/j.fsigen.2018.11.008
- DNA recovery and analysis from skeletal material in modern forensic contexts.Forensic Sci. Res. 2018; 4: 51-59https://doi.org/10.1080/20961790.2018.1515594
- The influence of the different mutation models in kinship evaluation.Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e255-e256https://doi.org/10.1016/j.fsigss.2017.09.093
- DNASEQEX Consortium, Massively parallel sequence data of 31 autosomal STR loci from 496 Spanish individuals revealed concordance with CE-STR technology and enhanced discrimination power.Forensic Sci. Int. Genet. 2019; 42: 49-55https://doi.org/10.1016/j.fsigen.2019.06.009
- Making decisions in missing person identification cases with low statistical power.Forensic Sci. Int. Genet. 2021; 54102519https://doi.org/10.1016/j.fsigen.2021.102519
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy