Advertisement
Forensic Population Genetics - Research Paper| Volume 57, 102650, March 2022

Download started.

Ok

Haplotype distribution in a forensic full mtDNA genome database of admixed Southern Brazilians and its association with self-declared ancestry and pigmentation traits

  • Eduardo Avila
    Correspondence
    Corresponding author at: Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
    Affiliations
    Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil

    Technical Scientific Section, Federal Police Department in Rio Grande do Sul State, Porto Alegre, RS, Brazil

    National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil
    Search for articles by this author
  • Pietro Augusto Speransa
    Affiliations
    Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
    Search for articles by this author
  • Catieli Gobetti Lindholz
    Affiliations
    Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
    Search for articles by this author
  • Alessandro Kahmann
    Affiliations
    National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil

    Institute of Mathematics, Statistics and Physics, Federal University of Rio Grande, Rio Grande, RS, Brazil
    Search for articles by this author
  • Clarice Sampaio Alho
    Affiliations
    Forensic Genetics Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil

    National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil
    Search for articles by this author
Published:December 20, 2021DOI:https://doi.org/10.1016/j.fsigen.2021.102650

      Highlights

      • A mtDNA full genome sequence database is described for a Southern Brazilian population.
      • Removal of potentially pathogenic variants has a small impact on the database forensic discrimination ability.
      • No association between haplotype biogeographical origin and self-declared ancestry was identified.
      • Maternal lineages are not sufficient to efficiently predict hair, skin, and eyes pigmentation traits.

      Abstract

      Background:

      The advent of massively parallel sequencing (MPS) applications focused on the generation of forensic-quality full mitochondrial genome sequences led to a popularization of the technique on a global scale. However, the lack of forensic-graded population databases has refrained a wider adoption of full genome sequences as the industry standard, despite its better discrimination capacity of individual maternal lineages.

      Purpose:

      This work describes a forensic-oriented full mtDNA genome database comprised of 480 samples from a Southern Brazilian population.

      Methods:

      A collection of mitochondrial sequences were obtained from low-pass, full genome DNA sequencing results. The complete sample set was evaluated regarding haplotype composition and distribution. Summary statistics and forensic parameters were calculated and are presented for the database, with detailed information concerning the impact of removing genetic information in the form of specific variants or increasingly larger genomic regions. Interpopulational analysis comparing haplotypical diversity in Brazilian and 26 worldwide populations was also performed. The association between mitochondrial genetic variability and phenotypic diversity was also evaluated in populations, with self-declared ancestry and three distinct phenotypic pigmentation traits (eyes, skin and hair colors) as parameters.

      Results:

      The presented database can be used to evaluate mitochondrial-related genetic evidence, providing LR values of up to 20,465 for unobserved haplotypes. Haplotype distribution in Southern Brazil seems to be different than the remaining of the country, with a larger contribution of maternal lines with European origin. Despite association can be found between lighter and darker phenotypes or self-declared ancestry and haplotype distribution, prediction models cannot be reliably proposed due to the admixed nature of the Brazilian population.

      Conclusions:

      The proposed database provides a basis for statistical calculation and frequency estimation of full mitochondrial genomes, and can be part of an integrated, representative, national database comprising most of the genetic diversity of maternal lineages in the country.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brandhagen M.D.
        • Just R.S.
        • Irwin J.A.
        Validation of NGS for mitochondrial DNA casework at the FBI laboratory.
        Forensic Sci. Int.: Genet. 2020; 44102151https://doi.org/10.1016/j.fsigen.2019.102151
        • Avila E.
        • Graebin P.
        • Chemale G.
        • Freitas J.
        • Kahmann A.
        • Alho C.S.
        Full mtdna genome sequencing of Brazilian admixed populations: A forensic-focused evaluation of a MPS application as an alternative to sanger sequencing methods.
        Forensic Sci. Int.: Genet. 2019; 42: 154-164https://doi.org/10.1016/j.fsigen.2019.07.004
        • Faccinetto C.
        • Sabbatini D.
        • Serventi P.
        • Rigato M.
        • Salvoro C.
        • Casamassima G.
        • Margiotta G.
        • De Fanti S.
        • Sarno S.
        • Staiti N.
        • Luiselli D.
        • Marino A.
        • Vazza G.
        Internal validation and improvement of mitochondrial genome sequencing using the precision id mtdna whole genome panel.
        Int. J. Legal Med. 2021; https://doi.org/10.1007/s00414-021-02686-w
        • Canale L.C.
        • Parson W.
        • Holland M.M.
        The time is now for ubiquitous forensic mtMPS analysis.
        Wiley Interdiscip. Rev. Forensic Sci. 2021; https://doi.org/10.1002/wfs2.1431
        • Just R.S.
        • Scheible M.K.
        • Fast S.A.
        • Sturk-Andreaggi K.
        • Röck A.W.
        • Bush J.M.
        • Higginbotham J.L.
        • Peck M.A.
        • Ring J.D.
        • Huber G.E.
        • Xavier C.
        • Strobl C.
        • Lyons E.A.
        • Diegoli T.M.
        • Bodner M.
        • Fendt L.
        • Kralj P.
        • Nagl S.
        • Niederwieser D.
        • Zimmermann B.
        • Parson W.
        • Irwin J.A.
        Full mtgenome reference data: Development and characterization of 588 forensic-quality haplotypes representing three u.s. populations.
        Forensic Sci. Int.: Genet. 2015; 14: 141-155https://doi.org/10.1016/j.fsigen.2014.09.021
        • Brenner C.H.
        Fundamental problem of forensic mathematics—The evidential value of a rare haplotype.
        Forensic Sci. Int.: Genet. 2010; 4: 281-291https://doi.org/10.1016/j.fsigen.2009.10.013
        • Braganholi D.F.
        • Freitas J.M.
        • Andrekenas N.
        • Januário B.
        • Ambrosio I.
        • Polverari F.
        • M.B. C.R.
        Analysis of the complete mtdna in Brazilian samples: Haplotypes differentiation and identification of new variations in native American haplogroups.
        Forensic Sci. Int.: Genet. Suppl. Ser. 2019; 7: P345-346https://doi.org/10.1016/j.fsigss.2019.10.005
        • SWGDAM (Scientific Working Group on DNA Analysis Methods)
        Interpretation guidelines for mitochondrial DNA analysis by forensic DNA testing laboratories.
        2019 (URL https://1ecb9588-ea6f-4feb-971a-73265dbf079c.filesusr.com/ugd/4344b0_f61de6abf3b94c52b28139bff600ae98.pdf)
        • Resque R.
        • Gusmão L.
        • Geppert M.
        • Roewer L.
        • Palha T.
        • Alvarez L.
        • Ribeiro-dos Santos Å.
        • Santos S.
        Male lineages in Brazil: Intercontinental admixture and stratification of the European background.
        PLoS One. 2016; 11: 1-17https://doi.org/10.1371/journal.pone.0152573
        • Guerreiro-Junior V.
        • Bisso-Machado R.
        • Marrero A.
        • Hünemeier T.
        • Salzano F.M.
        • Bortolini M.C.
        Genetic signatures of parental contribution in black and white populations in brazil.
        Genet. Mol. Biol. 2009; 32https://doi.org/10.1590/S1415-47572009005000001
        • Alves-Silva J.
        • da Silva Santos M.
        • aes P.E.G.
        • Ferreira A.C.
        • Bandelt H.-J.
        • Pena S.D.
        • Prado V.F.
        The ancestry of brazilian mtdna lineages.
        Am. J. Hum. Genet. 2000; 67: 444-461https://doi.org/10.1086/303004
        • Freitas J.M.
        • Fassio L.H.
        • Braganholi D.F.
        • Chemale G.
        Mitochondrial DNA control region haplotypes and haplogroup diversity in a sample from Brasília, Federal District, Brazil.
        Forensic Sci. Int.: Genet. 2019; 40: e228-e230https://doi.org/10.1016/j.fsigen.2019.02.006
        • Kehdy F.S.G.
        • Gouveia M.H.
        • Machado M.
        • Magalhães W.C.S.
        • Horimoto A.R.
        • Horta B.L.
        • Moreira R.G.
        • Leal T.P.
        • Scliar M.O.
        • Soares-Souza G.B.
        • Rodrigues-Soares F.
        • Araújo G.S.
        • Zamudio R.
        • Sant Anna H.P.
        • Santos H.C.
        • Duarte N.E.
        • Fiaccone R.L.
        • Figueiredo C.A.
        • Silva T.M.
        • Costa G.N.O.
        • Beleza S.
        • Berg D.E.
        • Cabrera L.
        • Debortoli G.
        • Duarte D.
        • Ghirotto S.
        • Gilman R.H.
        • Gonçalves V.F.
        • Marrero A.R.
        • Muniz Y.C.
        • Weissensteiner H.
        • Yeager M.
        • Rodrigues L.C.
        • Barreto M.L.
        • Lima-Costa M.F.
        • Pereira A.C.
        • Rodrigues M.R.
        • Tarazona-Santos E.
        Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations.
        Proc. Natl. Acad. Sci. 2015; 112: 8696-8701https://doi.org/10.1073/pnas.1504447112
        • Souza A.M.
        • Resende S.S.
        • Sousa T.N.
        • Brito C.F.A.
        A systematic scoping review of the genetic ancestry of the Brazilian population.
        Genet. Mol. Biol. 2019; 42 (URL http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572019000400495&nrm=iso): 495-508
        • Ribeiro D.
        O Povo Brasileiro: A Formação e o Sentido do Brasil.
        first ed. Global Editora, São Paulo2015
        • IBGE
        Instituto Brasileiro de Geografia e Estatística, Atlas do Censo Demográfico 2010.
        first ed. IBGE, 2010
        • Dornelles C.
        • Callegari-Jacques S.
        • Robinson W.
        • Weimer T.
        • Franco M.
        • Hickmann A.
        • Geiger C.
        • Salzano F.
        Genetics, surnames, grandparents’ nationalities, and ethnic admixture in Southern Brazil: Do the patterns of variation coincide?.
        Genet. Mol. Biol. 1999; 22: 151-161
        • Zembrzuski V.M.
        • Callegari-Jacques S.M.
        • Hutz M.H.
        Application of an african ancestry index as a genomic control approach in a brazilian population.
        Ann. Hum. Genet. 2006; 70: 822-828https://doi.org/10.1111/j.1469-1809.2006.00270.x
        • Cardena M.M.S.G.
        • Ribeiro-dos Santos A.
        • Santos S.
        • Mansur A.J.
        • Pereira A.C.
        • Fridman C.
        Assessment of the relationship between self-declared ethnicity, mitochondrial haplogroups and genomic ancestry in Brazilian individuals.
        PLoS One. 2013; 8: 1-6https://doi.org/10.1371/journal.pone.0062005
        • Marrero A.R.
        • Bravi C.
        • Stuart S.
        • Long J.C.
        • Leite F.P.d.N.
        • Kommers T.
        • Carvalho C.M.
        • Pena S.D.J.
        • Ruiz-Linares A.
        • Salzano F.M.
        • Bortolini M.C.
        Pre- and post-columbian gene and cultural continuity: The case of the gaucho from southern Brazil.
        Hum. Heredity. 2007; 64: 160-171https://doi.org/10.1159/000102989
        • Marrero A.R.
        • Leite F.P.d.N.
        • carvalho B.d.A.
        • Peres L.M.
        • Kommers T.C.
        • Cruz I.M.
        • Salzano F.M.
        • Ruiz-Linares A.
        • Da Silva Júnior W.A.
        • Bortolini M.C.
        Heterogeneity of the genome ancestry of individuals classified as white in the state of rio grande do sul, brazil.
        Amer. J. Hum. Biol. 2005; 17: 496-506https://doi.org/10.1002/ajhb.20404
        • Parra F.C.
        • Amado R.C.
        • Lambertucci J.R.
        • Rocha J.
        • Antunes C.M.
        • Pena S.D.J.
        Color and genomic ancestry in brazilians.
        Proc. Natl. Acad. Sci. 2003; 100 (arXiv:https://www.pnas.org/content/100/1/177.full.pdf): 177-182https://doi.org/10.1073/pnas.0126614100
        • Ramos B.R.d.A.
        • D’Elia M.P.B.
        • Amador M.A.T.
        • Santos N.P.C.
        • Santos S.E.B.
        • Castelli E.d.C.
        • Witkin S.S.
        • Miot H.A.
        • Miot L.D.B.
        • Silva M.G.a.d.
        Neither self-reported ethnicity nor declared family origin are reliable indicators of genomic ancestry.
        Genetica. 2016; 144: 259-265https://doi.org/10.1007/s10709-016-9894-1
        • Silva W.A.
        • Bortolini M.C.
        • Schneider M.P.C.
        • Marrero A.
        • Elion J.
        • Krishnamoorthy R.
        • Zago M.A.
        mtDNA Haplogroup analysis of black brazilian and sub-saharan populations: implications for the atlantic slave trade.
        Hum. Biol. 2006; 1: 29-41https://doi.org/10.1353/hub.2006.0028
        • World Medical Association
        World medical association declaration of helsinki: Ethical principles for medical research involving human subjects.
        JAMA. 2013; 310: 2191-2194https://doi.org/10.1001/jama.2013.281053
        • Andrews R.M.
        • Kubacka I.
        • Chinnery P.F.
        • Lightowlers R.N.
        • Turnbull D.M.
        • Howell N.
        Reanalysis and revision of the cambridge reference sequence for human mitochondrial DNA.
        Nature Genet. 1999; 23: 47https://doi.org/10.1038/13779
        • Heng L.
        A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data.
        Bioinformatics (Oxford, England). 2011; 21: 2897-2993https://doi.org/10.1093/bioinformatics/btr509
        • Woerner A.E.
        • Cihlar J.C.
        • Smart U.
        • Budowle B.
        Numt identification and removal with RtN!.
        Bioinformatics. 2020; 36: 5115-5116https://doi.org/10.1093/bioinformatics/btaa642
        • Weissensteiner H.
        • Forer L.
        • Fuchsberger C.
        • Schöpf B.
        • Kloss-Brandstätter A.
        • Specht G.
        • Kronenberg F.
        • Schönherr S.
        mtDNA-Server: Next-generation sequencing data analysis of human mitochondrial DNA in the cloud.
        Nucleic Acids Res. 2016; 44: W64-W69https://doi.org/10.1093/nar/gkw247
        • Robinson J.T.
        • Thorvaldsdóttir H.
        • Winckler W.
        • Guttman M.
        • Lander E.S.
        • Getz G.
        • Mesirov J.P.
        Integrative genomics viewer.
        Nature Biotechnol. 2011; 29: 24-26https://doi.org/10.1038/nbt.1754
        • Weissensteiner H.
        • Pacher D.
        • Kloss-Brandstätter A.
        • Forer L.
        • Specht G.
        • Bandelt H.-J.
        • Kronenberg F.
        • Salas A.
        • Schönherr S.
        HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing.
        Nucleic Acids Res. 2016; 44: W58-W63https://doi.org/10.1093/nar/gkw233
        • van Oven M.
        • Kayser M.
        Updated comprehensive phylogenetic tree of global human mitochondrial dna variation.
        Hum. Mutat. 2009; 30: E386-E394https://doi.org/10.1002/humu.20921
        • Nazarian A.
        • Gezan S.A.
        Genomatrix: A software package for pedigree-based and genomic prediction analyses on complex traits.
        J. Heredity. 2016; 107: 372-379https://doi.org/10.1093/jhered/esw020
        • Bodner M.
        • Irwin J.A.
        • Coble M.D.
        • Parson W.
        Inspecting close maternal relatedness: Towards better mtDNA population samples in forensic databases.
        Forensic Sci. Int.: Genet. 2011; 5: 138-141https://doi.org/10.1016/j.fsigen.2010.10.001
        • Parson W.
        • Dür A.
        EMPOP—A forensic mtDNA database.
        Forensic Sci. Int.: Genet. 2007; 1 (DNA in Forensics 2006): 88-92https://doi.org/10.1016/j.fsigen.2007.01.018
        • Excoffier L.
        • Lischer H.E.
        Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows.
        Mol. Ecol. Resour. 2010; 10: 564-567https://doi.org/10.1111/j.1755-0998.2010.02847.x
        • 1000 Genomes Project Consortium et al
        An integrated map of genetic variation from 1092 human genomes.
        Nature. 2012; 491: 56-65https://doi.org/10.1038/nature11632
        • Katoh K.
        • Toh H.
        Recent developments in the MAFFT multiple sequence alignment program.
        Brief. Bioinform. 2008; 9: 286-298https://doi.org/10.1093/bib/bbn013
        • Kumar S.
        • Stecher G.
        • Tamura K.
        MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets.
        Mol. Biol. Evol. 2016; 33: 1870-1874https://doi.org/10.1093/molbev/msw054
        • Marshall C.
        • Sturk-Andreaggi K.
        • Ring J.D.
        • Dür A.
        • Parson W.
        Pathogenic variant filtering for mitochondrial genome haplotype reporting.
        Genes. 2020; 11: 1140https://doi.org/10.3390/genes11101140
        • Salzano F.M.
        • Bortolini M.C.
        The Evolution and Genetics of Latin American Populations.
        first ed. Cambridge University Press, 2005
        • Ruiz-Linares A.
        • Adhikari K.
        • Acuña Alonzo V.
        • Quinto-Sanchez M.
        • Jaramillo C.
        • Arias W.
        • Fuentes M.
        • Pizarro M.
        • Everardo P.
        • de Avila F.
        • Gómez-Valdés J.
        • León-Mimila P.
        • Hunemeier T.
        • Ramallo V.
        • Silva de Cerqueira C.C.
        • Burley M.-W.
        • Konca E.
        • de Oliveira M.Z.
        • Veronez M.R.
        • Rubio-Codina M.
        • Attanasio O.
        • Gibbon S.
        • Ray N.
        • Gallo C.
        • Poletti G.
        • Rosique J.
        • Schuler-Faccini L.
        • Salzano F.M.
        • Bortolini M.-C.
        • Canizales-Quinteros S.
        • Rothhammer F.
        • Bedoya G.
        • Balding D.
        • Gonzalez-José R.
        Admixture in latin america: Geographic structure, phenotypic diversity and self-perception of ancestry based on 7,342 individuals.
        PLoS Genet. 2014; 10: 1-13https://doi.org/10.1371/journal.pgen.1004572
        • Otaka I.
        • Kumagai K.
        • Inagaki Y.
        • Shimoyama M.
        • Saegusa K.
        • Hara T.
        Simple and inexpensive software designed for the evaluation of color.
        Am. J. Ophthalmol. 2002; 133: 140-142https://doi.org/10.1016/s0002-9394(01)01213-2
        • Gupta V.
        • Sharma V.K.
        Skin typing: Fitzpatrick grading and others.
        Clin. Dermatol. 2019; 37: 430-436https://doi.org/10.1016/j.clindermatol.2019.07.010
        • Churchill J.D.
        • Stoljarova M.
        • King J.L.
        • Budowle B.
        Massively parallel sequencing-enabled mixture analysis of mitochondrial dna samples.
        Int. J. Legal Med. 2018; 132: 1263-1272https://doi.org/10.1007/s00414-018-1799-3
        • Schirmer M.
        • D́amore R.
        • Ijaz U.Z.
        • Hall N.
        • Quince C.
        Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data.
        BMC Bioinformatics. 2016; 17https://doi.org/10.1186/s12859-016-0976-y
        • Hwang K.-B.
        • Lee I.-H.
        • Won D.-G.
        • Hernandez-Ferrer C.
        • Negron J.A.
        • Kong S.W.
        Comparative analysis of whole-genome sequencing pipelines to minimize false negative findings.
        Sci. Rep. 2019; 9https://doi.org/10.1038/s41598-019-39108-2
        • Kim D.
        • Paggi J.M.
        • Park C.
        • Bennett C.
        • Salzberg S.L.
        Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype.
        Nature Biotechnol. 2019; 37: 907-915https://doi.org/10.1038/s41587-019-0201-4
        • Guo Y.
        • Long J.
        • He J.
        • Li C.-I.
        • Cai Q.
        • Shu X.-O.
        • Zheng W.
        • Li C.
        Exome sequencing generates high quality data in non-target regions.
        BMC Genom. 2012; 13https://doi.org/10.1186/1471-2164-13-194
        • Guo Y.
        • Ye F.
        • Sheng Q.
        • Clark T.
        • Samuels D.C.
        Three-stage quality control strategies for DNA re-sequencing data.
        Brief. Bioinform. 2013; 15: 879-889https://doi.org/10.1093/bib/bbt069
        • Rishishwar L.
        • Jordan K.
        Implications of human evolution and admixture for mitochondrial replacement therapy.
        BMC Genom. 2017; 18https://doi.org/10.1186/s12864-017-3539-3
        • Avila E.
        • Felkl A.B.
        • Graebin P.
        • Nunes C.P.
        • Alho C.S.
        Forensic characterization of Brazilian regional populations through massive parallel sequencing of 124 SNPs included in HID ion ampliseq identity panel.
        Forensic Sci. Int.: Genet. 2019; 40: 74-84
      1. R. Bisso-Machado, N.J.R. Fagundes, Uniparental genetic markers in Native Americans: A summary of all available data from ancient and contemporary populations, Am. J. Phys. Anthropol. n/a (n/a) http://dx.doi.org/10.1002/ajpa.24357.

        • Jannuzzi J.
        • Ribeiro J.
        • Alho C.
        • Lázaro e Arão G.O.
        • Cicarelli R.
        • Corrêa H.S.D.
        • Ferreira S.
        • Fridman C.
        • Gomes V.
        • Loiola S.
        • Mota M.F.
        • Ribeiro-dos Santos A.
        • Souza C.A.
        • Azulay R.S.S.
        • Carvalho E.F.
        • Gusmão L.
        Male lineages in Brazilian populations and performance of haplogroup prediction tools.
        Forensic Sci. Int.: Genet. 2020; 44102163https://doi.org/10.1016/j.fsigen.2019.102163
        • Schaan A.P.
        • Costa L.
        • Santos D.
        • Modesto A.
        • Amador M.
        • Lopes C.
        • Rabenhorst S.H.
        • Montenegro R.
        • Souza B.D.A.
        • Lopes T.
        • Yoshioka F.K.
        • Pinto G.
        • Silbiger V.
        • Ribeiro-dos Santos Â.
        mtDNA Structure: the women who formed the brazilian northeast.
        BMC Ecol. Evol. 2017; 17https://doi.org/10.1186/s12862-017-1027-7
        • Palencia L.
        • Valverde L.
        • Álvarez A.
        • Cainé L.M.
        • Cardoso S.
        • Alfonso-Sanchéz M.A.
        • Pinheiro M.F.
        • Pancorbo M.M.
        Mitochondrial dna diversity in a population from santa catarina (brazil): predominance of the european input.
        Int. J. Legal Med. 2010; 124: 331-336https://doi.org/10.1007/s00414-010-0464-2
        • Olivieri A.
        • Achilli A.
        • Pala M.
        • Battaglia V.
        • Fornarino S.
        • Al-Zahery N.
        • Scozzari R.
        • Cruciani F.
        • Behar D.M.
        • Dugoujon J.-M.
        • Coudray C.
        • Santachiara-Benerecetti A.S.
        • Semino O.
        • Bandelt H.-J.
        • Torroni A.
        The mtDNA legacy of the levantine early upper palaeolithic in africa.
        Science. 2006; 314: 1767-1770https://doi.org/10.1126/science.1135566
        • Pereira L.
        • Gonçalves J.a.
        • Franco-Duarte R.
        • Silva J.
        • Rocha T.
        • Arnold C.
        • Richards M.
        • Macaulay V.
        No evidence for an mtdna role in sperm motility: Data from complete sequencing of asthenozoospermic males.
        Mol. Biol. Evol. 2007; 24: 868-874https://doi.org/10.1093/molbev/msm004
        • Andersen M.M.
        • Balding D.J.
        How many individuals share a mitochondrial genome?.
        PLoS Genet. 2018; 14e1007774https://doi.org/10.1371/journal.pgen.1007774
        • Relethford J.H.
        Race and global patterns of phenotypic variation.
        Am. J. Phys. Anthropol. 2009; 139: 16-22https://doi.org/10.1002/ajpa.20900
        • Chen Y.
        • Branicki W.
        • Walsh S.
        • Nothnagel M.
        • Kayser M.
        • Liu F.
        The impact of correlations between pigmentation phenotypes and underlying genotypes on genetic prediction of pigmentation traits.
        Forensic Sci. Int.: Genet. 2021; 50102395https://doi.org/10.1016/j.fsigen.2020.102395
        • Lao O.
        • Vallone P.
        • Coble M.
        • Diegoli T.
        • van Oven M.
        • van der Gaag K.
        • Pijpe J.
        • de Knijff P.
        • Kayser M.
        Evaluating self-declared ancestry of U.S. Americans with autosomal, y-chromosomal and mitochondrial DNA.
        Hum. Mutat. 2010; 31: E1875-93https://doi.org/10.1002/humu.21366
        • Prestes P.R.
        • Mitchell R.J.
        • Daniel R.
        • Sanchez J.J.
        • van Oorschot R.A.
        Predicting biogeographical ancestry in admixed individuals – values and limitations of using uniparental and autosomal markers.
        Aust. J. Forensic Sci. 2015; 48: 10-23https://doi.org/10.1080/00450618.2015.1022600
        • Bodner M.
        • Perego U.A.
        • Gomez J.E.
        • Cerda-Flores N.R.
        • Woodward S.R.
        • Parson W.
        • Achilli A.
        The mitochondrial DNA landscape of modern Mexico.
        Genes. 2021; 12: 1453https://doi.org/10.3390/genes12091453