Advertisement
Research paper| Volume 57, 102656, March 2022

Download started.

Ok

A collaborative exercise on DNA methylation-based age prediction and body fluid typing

Published:December 16, 2021DOI:https://doi.org/10.1016/j.fsigen.2021.102656

      Highlights

      • Technical validation of DNA methylation-based age prediction and body fluid typing in 12 laboratories.
      • Body fluid typing from each laboratory provided sufficient information to determine appropriate age prediction methods.
      • Even with different experimental settings, mean absolute age prediction -errors were 5.0 years or less.
      • Genetic analyzer type, PCR buffer composition and bisulfite-converted DNA volume can affect DNA methylation measurement.
      • DNA methylation variation can be better controlled by harmonizing experimental conditions and improved technical training.

      Abstract

      DNA methylation has become one of the most useful biomarkers for age prediction and body fluid identification in the forensic field. Therefore, several assays have been developed to detect age-associated and body fluid-specific DNA methylation changes. Among the many methods developed, SNaPshot-based assays should be particularly useful in forensic laboratories, as they permit multiplex analysis and use the same capillary electrophoresis instrumentation as STR analysis. However, technical validation of any developed assays is crucial for their proper integration into routine forensic workflow. In the present collaborative exercise, two SNaPshot multiplex assays for age prediction and a SNaPshot multiplex for body fluid identification were tested in twelve laboratories. The experimental set-up of the exercise was designed to reflect the entire workflow of SNaPshot-based methylation analysis and involved four increasingly complex tasks designed to detect potential factors influencing methylation measurements. The results of body fluid identification from each laboratory provided sufficient information to determine appropriate age prediction methods in subsequent analysis. In age prediction, systematic measurement differences resulting from the type of genetic analyzer used were identified as the biggest cause of DNA methylation variation between laboratories. Also, the use of a buffer that ensures a high ratio of specific to non-specific primer binding resulted in changes in DNA methylation measurement, especially when using degenerate primers in the PCR reaction. In addition, high input volumes of bisulfite-converted DNA often caused PCR failure, presumably due to carry-over of PCR inhibitors from the bisulfite conversion reaction. The proficiency of the analysts and experimental conditions for efficient SNaPshot reactions were also important for consistent DNA methylation measurement. Several bisulfite conversion kits were used for this study, but differences resulting from the use of any specific kit were not clearly discerned. Even when different experimental settings were used in each laboratory, a positive outcome of the study was a mean absolute age prediction error amongst participant’s data of only 2.7 years for semen, 5.0 years for blood and 3.8 years for saliva.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vidaki A.
        • Kayser M.
        Recent progress, methods and perspectives in forensic epigenetics.
        Forensic Sci. Int. Genet. 2018; 37: 180-195https://doi.org/10.1016/j.fsigen.2018.08.008
        • Hannum G.
        • Guinney J.
        • Zhao L.
        • Zhang L.
        • Hughes G.
        • Sadda S.V.
        • Klotzle B.
        • Bibikova M.
        • Fan J.B.
        • Gao Y.
        • Deconde R.
        • Chen M.
        • Rajapakse I.
        • Friend S.
        • Ideker T.
        • Zhang K.
        Genome-wide methylation profiles reveal quantitative views of human aging rates.
        Mol. Cell. 2013; 49: 359-367https://doi.org/10.1016/j.molcel.2012.10.016
        • Horvath S.
        DNA methylation age of human tissues and cell types.
        Genome Biol. 2013; 14: R115https://doi.org/10.1186/gb-2013-14-10-r115
        • Bocklandt S.
        • Lin W.
        • Sehl M.E.
        • Sánchez F.J.
        • Sinsheimer J.S.
        • Horvath S.
        • Vilain E.
        Epigenetic predictor of age.
        PLoS One. 2011; 6e14821https://doi.org/10.1371/journal.pone.0014821
        • Zbieć-Piekarska R.
        • Spólnicka M.
        • Kupiec T.
        • Makowska Z.
        • Spas A.
        • Parys-Proszek A.
        • Kucharczyk K.
        • Płoski R.
        • Branicki W.
        Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science.
        Forensic Sci. Int. Genet. 2015; 14: 161-167https://doi.org/10.1016/j.fsigen.2014.10.002
        • Lee H.Y.
        • Jung S.E.
        • Oh Y.N.
        • Choi A.
        • Yang W.I.
        • Shin K.J.
        Epigenetic age signatures in the forensically relevant body fluid of semen: a preliminary study.
        Forensic Sci. Int. Genet. 2015; 19: 28-34https://doi.org/10.1016/j.fsigen.2015.05.014
        • Weidner C.I.
        • Lin Q.
        • Koch C.M.
        • Eisele L.
        • Beier F.
        • Ziegler P.
        • Bauerschlag D.O.
        • Jöckel K.H.
        • Erbel R.
        • Mühleisen T.W.
        • Zenke M.
        • Brümmendorf T.H.
        • Wagner W.
        Aging of blood can be tracked by DNA methylation changes at just three CpG sites.
        Genome Biol. 2014; 15: 24https://doi.org/10.1186/gb-2014-15-2-r24
        • Zbieć-Piekarska R.
        • Spólnicka M.
        • Kupiec T.
        • Parys-Proszek A.
        • Makowska Z.
        • Pałeczka A.
        • Kucharczyk K.
        • Płoski R.
        • Branicki W.
        Development of a forensically useful age prediction method based on DNA methylation analysis.
        Forensic Sci. Int. Genet. 2015; 17: 173-179https://doi.org/10.1016/j.fsigen.2015.05.001
        • Park J.L.
        • Kim J.H.
        • Seo E.
        • Bae D.H.
        • Kim S.Y.
        • Lee H.C.
        • Woo K.M.
        • Kim Y.S.
        Identification and evaluation of age-correlated DNA methylation markers for forensic use.
        Forensic Sci. Int. Genet. 2016; 23: 64-70https://doi.org/10.1016/j.fsigen.2016.03.005
        • Alghanim H.
        • Antunes J.
        • Silva D.S.B.S.
        • Alho C.S.
        • Balamurugan K.
        • McCord B.
        Detection and evaluation of DNA methylation markers found at SCGN and KLF14 loci to estimate human age.
        Forensic Sci. Int. Genet. 2017; 31: 81-88https://doi.org/10.1016/j.fsigen.2017.07.011
        • Fleckhaus J.
        • Schneider P.M.
        Novel multiplex strategy for DNA methylation-based age prediction from small amounts of DNA via pyrosequencing.
        Forensic Sci. Int. Genet. 2020; 44102189https://doi.org/10.1016/j.fsigen.2019.102189
        • Li L.
        • Song F.
        • Lang M.
        • Hou J.
        • Wang Z.
        • Prinz M.
        • Hou Y.
        Methylation-based age prediction using pyrosequencing platform from seminal stains in Han Chinese males.
        J. Forensic Sci. 2020; 65: 610-619https://doi.org/10.1111/1556-4029.14186
        • Freire-Aradas A.
        • Phillips C.
        • Mosquera-Miguel A.
        • Girón-Santamaría L.
        • Gómez-Tato A.
        • Casares De Cal M.
        • Álvarez-Dios J.
        • Ansede-Bermejo J.
        • Torres-Español M.
        • Schneider P.M.
        • Pośpiech E.
        • Branicki W.
        • Carracedo Á.
        • Lareu M.V.
        Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system.
        Forensic Sci. Int. Genet. 2016; 24: 65-74https://doi.org/10.1016/j.fsigen.2016.06.005
        • Freire-Aradas A.
        • Phillips C.
        • Girón-Santamaría L.
        • Mosquera-Miguel A.
        • Gómez-Tato A.
        • Casares de Cal M.Á.
        • Álvarez-Dios J.
        • Lareu M.V.
        Tracking age-correlated DNA methylation markers in the young.
        Forensic Sci. Int. Genet. 2018; 36: 50-59https://doi.org/10.1016/j.fsigen.2018.06.011
        • Freire-Aradas A.
        • Pośpiech E.
        • Aliferi A.
        • Girón-Santamaría L.
        • Mosquera-Miguel A.
        • Pisarek A.
        • Ambroa-Conde A.
        • Phillips C.
        • Casares de Cal M.A.
        • Gómez-Tato A.
        • Spólnicka M.
        • Woźniak A.
        • Álvarez-Dios J.
        • Ballard D.
        • Court D.S.
        • Branicki W.
        • Carracedo Á.
        • Lareu M.V.
        A comparison of forensic age prediction models using data from four DNA methylation technologies.
        Front. Genet. 2020; 11: 1-12https://doi.org/10.3389/fgene.2020.00932
        • Jung S.E.
        • Lim S.M.
        • Hong S.R.
        • Lee E.H.
        • Shin K.J.
        • Lee H.Y.
        DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples.
        Forensic Sci. Int. Genet. 2019; 38: 1-8https://doi.org/10.1016/j.fsigen.2018.09.010
        • Hong S.R.
        • Jung S.E.
        • Lee E.H.
        • Shin K.J.
        • Yang W.I.
        • Lee H.Y.
        DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers.
        Forensic Sci. Int. Genet. 2017; 29: 118-125https://doi.org/10.1016/j.fsigen.2017.04.006
        • Hamano Y.
        • Manabe S.
        • Morimoto C.
        • Fujimoto S.
        • Tamaki K.
        Forensic age prediction for saliva samples using methylation-sensitive high resolution melting: exploratory application for cigarette butts.
        Sci. Rep. 2017; 7: 1-8https://doi.org/10.1038/s41598-017-10752-w
        • Vidaki A.
        • Ballard D.
        • Aliferi A.
        • Miller T.H.
        • Barron L.P.
        • Syndercombe Court D.
        DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing.
        Forensic Sci. Int. Genet. 2017; 28: 225-236https://doi.org/10.1016/j.fsigen.2017.02.009
        • Naue J.
        • Hoefsloot H.C.J.
        • Mook O.R.F.
        • Rijlaarsdam-Hoekstra L.
        • van der Zwalm M.C.H.
        • Henneman P.
        • Kloosterman A.D.
        • Verschure P.J.
        Chronological age prediction based on DNA methylation: massive parallel sequencing and random forest regression.
        Forensic Sci. Int. Genet. 2017; 31: 19-28https://doi.org/10.1016/j.fsigen.2017.07.015
        • Naue J.
        • Sänger T.
        • Hoefsloot H.C.J.
        • Lutz-Bonengel S.
        • Kloosterman A.D.
        • Verschure P.J.
        Proof of concept study of age-dependent DNA methylation markers across different tissues by massive parallel sequencing.
        Forensic Sci. Int. Genet. 2018; 36: 152-159https://doi.org/10.1016/j.fsigen.2018.07.007
        • Aliferi A.
        • Ballard D.
        • Gallidabino M.D.
        • Thurtle H.
        • Barron L.
        • Syndercombe Court D.
        DNA methylation-based age prediction using massively parallel sequencing data and multiple machine learning models.
        Forensic Sci. Int. Genet. 2018; 37: 215-226https://doi.org/10.1016/j.fsigen.2018.09.003
        • Lee J.W.
        • Choung C.M.
        • Jung J.Y.
        • Lee H.Y.
        • Lim S.K.
        A validation study of DNA methylation-based age prediction using semen in forensic casework samples.
        Leg. Med. 2018; 31: 74-77https://doi.org/10.1016/j.legalmed.2018.01.005
        • Juusola J.
        • Ballantyne J.
        mRNA profiling for body fluid identification by multiplex quantitative RT-PCR.
        J. Forensic Sci. 2007; 52: 1252-1262https://doi.org/10.1111/j.1556-4029.2007.00550.x
        • Haas C.
        • Klesser B.
        • Maake C.
        • Bär W.
        • Kratzer A.
        mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR.
        Forensic Sci. Int. Genet. 2009; 3: 80-88https://doi.org/10.1016/j.fsigen.2008.11.003
        • Fleming R.I.
        • Harbison S.
        The development of a mRNA multiplex RT-PCR assay for the definitive identification of body fluids.
        Forensic Sci. Int. Genet. 2010; 4: 244-256https://doi.org/10.1016/j.fsigen.2009.10.006
        • Hanson E.K.
        • Lubenow H.
        • Ballantyne J.
        Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs.
        Anal. Biochem. 2009; 387: 303-314https://doi.org/10.1016/j.ab.2009.01.037
        • Zubakov D.
        • Boersma A.W.M.
        • Choi Y.
        • Van Kuijk P.F.
        • Wiemer E.A.C.
        • Kayser M.
        MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation.
        Int. J. Leg. Med. 2010; 124: 217-226https://doi.org/10.1007/s00414-009-0402-3
        • Salzmann A.P.
        • Bamberg M.
        • Courts C.
        • Dørum G.
        • Gosch A.
        • Hadrys T.
        • Hadzic G.
        • Neis M.
        • Schneider P.M.
        • Sijen T.
        • van den Berge M.
        • Wiegand P.
        • Haas C.
        mRNA profiling of mock casework samples: results of a FoRNAP collaborative exercise.
        Forensic Sci. Int. Genet. 2021; 50102409https://doi.org/10.1016/j.fsigen.2020.102409
        • Frumkin D.
        • Wasserstrom A.
        • Budowle B.
        • Davidson A.
        DNA methylation-based forensic tissue identification.
        Forensic Sci. Int. Genet. 2011; 5: 517-524https://doi.org/10.1016/j.fsigen.2010.12.001
        • Lee H.Y.
        • Park M.J.
        • Choi A.
        • An J.H.
        • Yang W.I.
        • Shin K.J.
        Potential forensic application of DNA methylation profiling to body fluid identification.
        Int. J. Leg. Med. 2012; 126: 55-62https://doi.org/10.1007/s00414-011-0569-2
        • Madi T.
        • Balamurugan K.
        • Bombardi R.
        • Duncan G.
        • McCord B.
        The determination of tissue-specific DNA methylation patterns in forensic biofluids using bisulfite modification and pyrosequencing.
        Electrophoresis. 2012; 33: 1736-1745https://doi.org/10.1002/elps.201100711
        • Lee H.Y.
        • An J.H.
        • Jung S.E.
        • Oh Y.N.
        • Lee E.Y.
        • Choi A.
        • Yang W.I.
        • Shin K.J.
        Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers.
        Forensic Sci. Int. Genet. 2015; 17: 17-24https://doi.org/10.1016/j.fsigen.2015.03.002
        • Gauthier Q.T.
        • Cho S.
        • Carmel J.H.
        • McCord B.R.
        Development of a body fluid identification multiplex via DNA methylation analysis.
        Electrophoresis. 2019; 40: 2565-2574https://doi.org/10.1002/elps.201900118
        • Alghanim H.
        • Balamurugan K.
        • McCord B.
        Development of DNA methylation markers for sperm, saliva and blood identification using pyrosequencing and qPCR/HRM.
        Anal. Biochem. 2020; 611113933https://doi.org/10.1016/j.ab.2020.113933
        • Liu W.
        • Butler E.
        • Yang H.
        • Fenyö D.
        • Siegel D.
        Informatics approaches to forensic body fluid identification by proteomic mass spectrometry.
        Applications in Forensic Proteomics: Protein Identification and Profiling, Chapter 5. 2019: 81-90
        • de Beijer R.P.
        • de Graaf C.
        • van Weert A.
        • van Leeuwen T.G.
        • Aalders M.C.G.
        • van Dam A.
        Identification and detection of protein markers to differentiate between forensically relevant body fluids.
        Forensic Sci. Int. 2018; 290: 196-206https://doi.org/10.1016/j.forsciint.2018.07.013
        • Fleming R.I.
        • Harbison S.
        The use of bacteria for the identification of vaginal secretions.
        Forensic Sci. Int. Genet. 2010; 4: 311-315https://doi.org/10.1016/j.fsigen.2009.11.008
        • Hanssen E.N.
        • Avershina E.
        • Rudi K.
        • Gill P.
        • Snipen L.
        Body fluid prediction from microbial patterns for forensic application.
        Forensic Sci. Int. Genet. 2017; 30: 10-17https://doi.org/10.1016/j.fsigen.2017.05.009
        • Salzmann A.P.
        • Russo G.
        • Aluri S.
        • Haas C.
        Transcription and microbial profiling of body fluids using a massively parallel sequencing approach.
        Forensic Sci. Int. Genet. 2019; 43102149https://doi.org/10.1016/j.fsigen.2019.102149
        • Dobay A.
        • Haas C.
        • Fucile G.
        • Downey N.
        • Morrison H.G.
        • Kratzer A.
        • Arora N.
        Microbiome-based body fluid identification of samples exposed to indoor conditions.
        Forensic Sci. Int. Genet. 2019; 40: 105-113https://doi.org/10.1016/j.fsigen.2019.02.010
        • Jung S.E.
        • Cho S.
        • Antunes J.
        • Gomes I.
        • Uchimoto M.L.
        • Oh Y.N.
        • Di Giacomo L.
        • Schneider P.M.
        • Park M.S.
        • van der Meer D.
        • Williams G.
        • McCord B.
        • Ahn H.J.
        • Choi D.H.
        • Lee Y.H.
        • Lee S.D.
        • Lee H.Y.
        A collaborative exercise on DNA methylation based body fluid typing.
        Electrophoresis. 2016; 37: 2759-2766https://doi.org/10.1002/elps.201600256
        • Lee H.Y.
        • Jung S.E.
        • Lee E.H.
        • Yang W.I.
        • Shin K.J.
        DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood.
        Forensic Sci. Int. Genet. 2016; 24: 75-82https://doi.org/10.1016/j.fsigen.2016.06.007
        • So M.H.
        • Lee H.Y.
        Genetic analyzer-dependent DNA methylation detection and its application to existing age prediction models.
        Electrophoresis. 2021; 42: 1497-1506https://doi.org/10.1002/elps.202000312
        • Naue J.
        • Pfeifer M.
        • Augustin C.
        • Becker J.
        • Fleckhaus J.
        • Grabmüller M.
        • Han Y.
        • Heidorn F.
        • Hollaender O.
        • Klein-Unseld R.
        • Kulstein G.
        • Lichtenwald J.
        • Neubauer J.
        • Suarez P.
        • Haas C.
        • Schneider P.M.
        • Vennemann M.
        • Böhme P.
        Arbeitsgemeinschaft Molekulare Altersschätzung der Deutschen Gesellschaft für Rechtsmedizin (DGRM).
        Forens. DNA-Methylierungsanal. Rechtsmed. 2021; 31: 202-216https://doi.org/10.1007/s00194-021-00493-6
        • Butler J.M.
        Advanced Topics in Forensic DNA Typing: Methodology.
        Elsevier/Academic Press, Waltham, MA2012: 141-165