Advertisement
Research paper| Volume 57, 102657, March 2022

Download started.

Ok

Forensic nanopore sequencing of microhaplotype markers using QitanTech’s QNome

Published:December 27, 2021DOI:https://doi.org/10.1016/j.fsigen.2021.102657

      Highlights

      • This study evaluates the forensic applicability of nanopore sequencing in MH typing.
      • MHtyper was developed for automated MH designation on nanopore sequencing data.
      • QNome can generate concordant MH result with MPS method.
      • 15 MHs can be reliably genotyped using the QNome, with an overall accuracy of 99.83%.

      Abstract

      In recent years, extraordinary progress has been made in genome sequencing technologies, which has led to a decrease in cost and an increase in the diversity of sequenced genomes. Nanopore sequencing is one of the latest genome sequencing technologies. It aims to sequence longer contiguous pieces of DNA, which are essential for resolving structurally complex regions, and provides a new approach for forensic genetics to detect longer markers in real time. To date, multiple studies have been conducted to sequence forensic markers using MinION from Oxford Nanopore Technologies (ONT), and the results indicate that nanopore sequencing holds promise for forensic applications. Qitan Technology (QitanTech) recently launched its first commercial nanopore genome sequencer, QNome. It could achieve a read length of more than 150 kbp, and could generate approximately 500 Mb of data in 8 h. In this pilot study, we explored and validated this alternative nanopore sequencing device for microhaplotype (MH) profiling using a custom set of 15 MH loci. Seventy single-contributor samples were divided into 7 batches, each of which included 10 samples and control DNA 9947A and was sequenced by QNome. MH genotypes generated from QNome were compared to those from Ion Torrent sequencing (Ion S5XL system) to evaluate the accuracy and stability. Twelve samples randomly selected from the last three batches and Control DNA 9947A were also subjected to ONT MinION sequencing (with R9.4 flow cell) for parallel comparison. Based on MHtyper, a bioinformatics workflow developed for automated MH designation, all MH loci can be genotyped and reliably phased using the QNome data, with an overall accuracy of 99.83% (4 errors among 2310 genotypes). Three occurred near or in the region of homopolymer sequences, and one existed within 50 bp of the start of the sequencing reaction. In the last 15 samples (12 individual samples and 3 replicates of control DNA 9947A), two SNPs located at 4-mer homopolymers failed to obtain reliable genotypes on the MinION data. This study shows the potential of state-of-the-art nanopore sequencing methods to analyze forensic MH markers. Given the rapid pace of change, sporadic and nonrepetitive errors presented in this study are expected to be resolved by further developments of nanopore technologies and analysis tools.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jobbing M.A.
        • Gill P.
        Encoded evidence: DNA in forensic analysis.
        Nat. Rev. Genet. 2004; 5: 739-751
        • Kayser M.
        • de Knijff P.
        Improving human forensics through advances in genetics, genomics and molecular biology.
        Nat. Rev. Genet. 2011; 12: 179-192
        • Butler J.M.
        Genetics and genomics of core short tandem repeat loci used in human identity testing.
        J. Forensic Sci. 2006; 51: 253-265
        • Hares D.R.
        Expanding the CODIS core loci in the United States.
        Forensic Sci. Int. Genet. 2012; 6: e52-e54
        • Hares D.R.
        Selection and implementation of expanded CODIS core loci in the United States.
        Forensic Sci. Int. Genet. 2015; 17: 33-34
        • Goodwin S.
        • McPherson J.D.
        • McCombie W.R.
        Coming of age: ten years of next-generation sequencing technologies.
        Nat. Rev. Genet. 2016; 17: 333-351
        • Børsting C.
        • Morling N.
        Next generation sequencing and its applications in forensic genetics.
        Forensic Sci. Int. Genet. 2015; 18: 78-89
        • Bruijns B.
        • Tiggelaar R.
        • Gardeniers H.
        Massively parallel sequencing techniques for forensics: a review.
        Electrophoresis. 2018; 39: 2642-2654
        • Alonso A.
        • Barrio P.A.
        • Müller P.
        • Köcher S.
        • Berger B.
        • Martin P.
        • et al.
        Current state-of-art of STR sequencing in forensic genetics.
        Electrophoresis. 2018; 39: 2655-2668
        • Oliveira M.
        • Amorim A.
        Microbial forensics: new breakthroughs and future prospects.
        Appl. Microbiol. Biotechnol. 2018; 102: 10377-10391
        • Haas C.
        • Neubauer J.
        • Salzmann A.P.
        • Hanson E.
        • Ballantyne J.
        Forensic transcriptome analysis using massively parallel sequencing.
        Forensic Sci. Int. Genet. 2021; 52102486
        • Bentley D.R.
        • Balasubramanian S.
        • Swerdlow H.P.
        • Smith G.P.
        • Milton J.
        • Brown C.G.
        • et al.
        Accurate whole human genome sequencing using reversible terminator chemistry.
        Nature. 2008; 456: 53-59
        • Rothberg J.M.
        • Hinz W.
        • Rearick T.M.
        • Schultz J.
        • Mileski W.
        • Davey M.
        • et al.
        An integrated semiconductor device enabling non-optical genome sequencing.
        Nature. 2011; 475: 348-352
        • Seo S.B.
        • King J.L.
        • Warshauer D.H.
        • Davis C.P.
        • Ge J.
        • Budowle B.
        Single nucleotide polymorphism typing with massively parallel sequencing.
        Int. J. Leg. Med. 2013; 127: 1079-1086
        • Eduardoff M.
        • Santos C.
        • de la Puente M.
        • Gross T.E.
        • Fondevila M.
        • Strobl C.
        • et al.
        Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGMTM.
        Forensic Sci. Int. Genet. 2015; 17: 110-121
        • Parson W.
        • Strobl C.
        • Huber G.
        • Zimmermann B.
        • Gomes S.M.
        • Souto L.
        • et al.
        Reprint of: evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM).
        Forensic Sci. Int. Genet. 2013; 7: 632-639
        • King J.L.
        • LaRue B.L.
        • Novroski N.M.
        • Stoljarova M.
        • Seo S.B.
        • Zeng X.
        • et al.
        High quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq.
        Forensic Sci. Int. Genet. 2014; 12: 128-135
        • McElhoe J.A.
        • Holland M.M.
        • Makova K.D.
        • Su M.S.
        • Paul I.M.
        • Baker C.H.
        • et al.
        Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq.
        Forensic Sci. Int. Genet. 2014; 13: 20-29
        • Wang Z.
        • Zhou D.
        • Cao Y.
        • Hu Z.
        • Zhang S.
        • Bian Y.
        • et al.
        Characterization of microRNA expression profiles in blood and saliva using the Ion Personal Genome Machine System (Ion PGMTM System).
        Forensic Sci. Int. Genet. 2016; 20: 140-146
        • Wang S.
        • Wang Z.
        • Tao R.
        • Wang M.
        • Liu J.
        • He G.
        • et al.
        Expression profile analysis of piwi-interacting RNA in forensically relevant biological fluids.
        Forensic Sci. Int. Genet. 2019; 42: 171-180
        • Hanson E.
        • Ingold S.
        • Haas C.
        • Ballantyne J.
        Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing.
        Forensic Sci. Int. Genet. 2018; 34: 206-221
        • Dørum G.
        • Ingold S.
        • Hanson E.
        • Ballantyne J.
        • Russo G.
        • Aluri S.
        • et al.
        Predicting the origin of stains from whole miRNome massively parallel sequencing data.
        Forensic Sci. Int. Genet. 2019; 40: 131-139
        • Liu J.
        • Ming T.
        • Lang M.
        • Liu H.
        • Xie M.
        • Li J.
        • et al.
        Exploitation of a novel slowly mutating Y-STRs set and evaluation of slowly mutating Y-STRs plus Y-SNPs typing strategy in forensic genetics and evolutionary research.
        Electrophoresis. 2021; 42: 774-785
        • Wang M.
        • Wang Z.
        • He G.
        • Liu J.
        • Wang S.
        • Qian X.
        • et al.
        Developmental validation of a custom panel including 165 Y-SNPs for Chinese Y-chromosomal haplogroups dissection using the ion S5 XL system.
        Forensic Sci. Int. Genet. 2019; 38: 70-76
        • Tao R.
        • Qi W.
        • Chen C.
        • Zhang J.
        • Yang Z.
        • Song W.
        • et al.
        Pilot study for forensic evaluations of the Precision ID GlobalFilerTM NGS STR Panel v2 with the Ion S5TM system.
        Forensic Sci. Int. Genet. 2019; 43102147
        • Pereira V.
        • Mogensen H.S.
        • Børsting C.
        • Morling N.
        Evaluation of the Precision ID Ancestry Panel for crime case work: a SNP typing assay developed for typing of 165 ancestral informative markers.
        Forensic Sci. Int. Genet. 2017; 28: 138-145
        • Meiklejohn K.A.
        • Robertson J.M.
        Evaluation of the Precision ID Identity Panel for the Ion TorrentTM PGMTM sequencer.
        Forensic Sci. Int. Genet. 2017; 31: 48-56
        • Strobl C.
        • Eduardoff M.
        • Bus M.M.
        • Allen M.
        • Parson W.
        Evaluation of the precision ID whole MtDNA genome panel for forensic analyses.
        Forensic Sci. Int. Genet. 2018; 35: 21-25
        • Zeng X.
        • King J.
        • Hermanson S.
        • Patel J.
        • Storts D.R.
        • Budowle B.
        An evaluation of the PowerSeqTM Auto System: a multiplex short tandem repeat marker kit compatible with massively parallel sequencing.
        Forensic Sci. Int. Genet. 2015; 19: 172-179
        • Riman S.
        • Iyer H.
        • Borsuk L.A.
        • Vallone P.M.
        Understanding the characteristics of sequence-based single-source DNA profiles.
        Forensic Sci. Int. Genet. 2020; 44102192
        • Köcher S.
        • Müller P.
        • Berger B.
        • Bodner M.
        • Parson W.
        • Roewer L.
        • et al.
        Inter-laboratory validation study of the ForenSeqTM DNA Signature Prep Kit.
        Forensic Sci. Int. Genet. 2018; 36: 77-85
        • Alonso A.
        • Müller P.
        • Roewer L.
        • Willuweit S.
        • Budowle B.
        • Parson W.
        European survey on forensic applications of massively parallel sequencing.
        Forensic Sci. Int. Genet. 2017; 29: e23-e25
        • Clarke J.
        • Wu H.C.
        • Jayasinghe L.
        • Patel A.
        • Reid S.
        • Bayley H.
        Continuous base identification for single-molecule nanopore DNA sequencing.
        Nat. Nanotechnol. 2009; 4: 265-270
        • Jain M.
        • Olsen H.E.
        • Paten B.
        • Akeson M.
        The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community.
        Genome Biol. 2016; 17: 256
        • Plesivkova D.
        • Richards R.
        • Harbison S.
        A review of the potential of the MinIONTM single-molecule sequencing system for forensic applications.
        WIREs Forensic Sci. 2019; 1e1323
        • Hall C.L.
        • Zascavage R.R.
        • Sedlazeck F.J.
        • Planz J.V.
        Potential applications of nanopore sequencing for forensic analysis.
        Forensic Sci. Rev. 2020; 32: 23-54
        • Cornelis S.
        • Gansemans Y.
        • Plaetsen A.V.
        • Weymaere J.
        • Willems S.
        • Deforce D.
        Forensic tri-allelic SNP genotyping using nanopore sequencing.
        Forensic Sci. Int. Genet. 2019; 38: 204-210
        • Cornelis S.
        • Gansemans Y.
        • Deleye L.
        • Deforce D.
        • Nieuwerburgh F.V.
        Forensic SNP genotyping using nanopore MinION sequencing.
        Sci. Rep. 2017; 7: 41759
        • Tytgat O.
        • Gansemans Y.
        • Weymaere J.
        • Rubben K.
        • Deforce D.
        • Nieuwerburgh F.V.
        Nanopore sequencing of a forensic STR multiplex reveals loci suitable for single-contributor STR profiling.
        Genes. 2020; 11: 381
        • Asogawa M.
        • Ohno A.
        • Nakagawa S.
        • Ochiai E.
        • Katahira Y.
        • Sudo M.
        • et al.
        Human short tandem repeat identification using a nanopore-based DNA sequencer: a pilot study.
        J. Hum. Genet. 2020; 65: 21-24
      1. S. Cornelis, S. Willems, C. Van Neste, O. Tytgat, J. Weymaere, A. Vander Plaetsen, et al., Forensic STR profiling using Oxford Nanopore Technologies’ MinION sequencer, bioRxiv, 2018, 〈https://doi.org/10.1101/433151〉.

        • Ren Z.
        • Zhang J.
        • Zhang X.
        • Liu X.
        • Lin Y.
        • Bai H.
        Forensic nanopore sequencing of STRs and SNPs using Verogen’s ForenSeq DNA Signature Prep Kit and MinION.
        Int. J. Leg. Med. 2021; 135: 1685-1693
        • Halla C.L.
        • Kesharwanib R.K.
        • Phillipsa N.R.
        • Planza J.V.
        • Sedlazeckb F.J.
        • Zascavagec R.R.
        Accurate profiling of forensic autosomal STRs using the Oxford Nanopore Technologies MinION device.
        Forensic Sci. Int. Genet. 2022; 56102629
        • Lindberg M.R.
        • Schmedes S.E.
        • Hewitt F.C.
        • Haas J.L.
        • Ternus K.L.
        • Kadavy D.R.
        • et al.
        A comparison and integration of MiSeq and MinION platforms for sequencing single source and mixed mitochondrial genomes.
        PLoS One. 2016; 11e0167600
        • Vasiljevic N.
        • Lim M.
        • Humble E.
        • Seah A.
        • Kratzer A.
        • Morf N.V.
        • et al.
        Developmental validation of Oxford Nanopore Technology MinION sequence data and the NGSpeciesID bioinformatic pipeline for forensic genetic species identification.
        Forensic Sci. Int. Genet. 2021; 53102493
        • Kidd K.K.
        • Pakstis A.J.
        • Speed W.C.
        • Lagace R.
        • Chang J.
        • Wootton S.
        • Ihuegbu N.
        Microhaplotype loci are a powerful new type of forensic marker.
        Forensic Sci. Int. Genet. Suppl. Ser. 2013; 4: e123-e124
        • Kidd K.K.
        • Pakstis A.J.
        • Speed W.C.
        • Lagace R.
        • Wootton S.
        • Chang J.
        Selecting microhaplotypes optimized for different purposes.
        Electrophoresis. 2018; 39: 2815-2823
        • Kidd K.K.
        • Speed W.C.
        Criteria for selecting microhaplotypes: mixture detection and deconvolution.
        Investig. Genet. 2015; 6: 1
        • Cheung E.Y.Y.
        • Phillips C.
        • Eduardoff M.
        • Lareu M.V.
        • McNevin D.
        Performance of ancestry-informative SNP and microhaplotype markers.
        Forensic Sci. Int. Genet. 2019; 43102141
        • Oldonia F.
        • Kiddb K.K.
        • Podinia D.
        Microhaplotypes in forensic genetics.
        Forensic Sci. Int. Genet. 2019; 38: 54-69
        • Kidd K.K.
        • Pakstis A.J.
        • Speed W.C.
        • Lagacé R.
        • Chang J.
        • Wootton S.
        • et al.
        Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics.
        Forensic Sci. Int. Genet. 2014; 12: 215-224
        • Staadig A.
        • Tillmar A.
        Evaluation of microhaplotypes in forensic kinship analysis from a Swedish population perspective.
        Int. J. Leg. Med. 2021; 135: 1151-1160
        • Turchi C.
        • Melchionda F.
        • Pesaresi M.
        • Tagliabracci A.
        Evaluation of a microhaplotypes panel for forensic genetics using massive parallel sequencing technology.
        Forensic Sci. Int. Genet. 2019; 41: 120-127
        • de la Puente M.
        • Phillips C.
        • Xavier C.
        • Amigo J.
        • Carracedo A.
        • Parson W.
        • et al.
        Building a custom large-scale panel of novel microhaplotypes for forensic identification using MiSeq and Ion S5 massively parallel sequencing systems.
        Forensic Sci. Int. Genet. 2020; 45102213
        • de la Puente M.
        • Ruiz-Ramírez J.
        • Ambroa-Conde A.
        • Xavier C.
        • Amigo J.
        • de Cal M.Á.C.
        • et al.
        Broadening the applicability of a custom multi-platform panel of microhaplotypes: bio-geographical ancestry inference and expanded reference data.
        Front. Genet. 2020; 11581041
        • Gandotra N.
        • Speed W.C.
        • Qin W.
        • Tang Y.
        • Pakstis A.J.
        • Kidd K.K.
        • et al.
        Validation of novel forensic DNA markers using multiplex microhaplotype sequencing.
        Forensic Sci. Int. Genet. 2020; 47102275
        • Pang J.B.
        • Rao M.
        • Chen Q.F.
        • Ji A.Q.
        • Zhang C.
        • Kang K.L.
        • et al.
        A 124-plex microhaplotype panel based on next-generation sequencing developed for forensic applications.
        Sci. Rep. 2020; 10: 1945
        • Oldoni F.
        • Bader D.
        • Fantinato C.
        • Wootton S.C.
        • Lagacé R.
        • Kidd K.K.
        • et al.
        A sequence-based 74plex microhaplotype assay for analysis of forensic DNA mixtures.
        Forensic Sci. Int. Genet. 2020; 49102367
        • Oldoni F.
        • Yoon L.
        • Wootton S.C.
        • Lagacé R.
        • Kidd K.K.
        • Podini D.
        Population genetic data of 74 microhaplotypes in four major U.S. population groups.
        Forensic Sci. Int. Genet. 2020; 49102398
      2. X. Zou, G. He, J. Liu, L. Jiang, M. Wang, P. Chen, et al., Screening and selection of 21 novel microhaplotype markers for ancestry inference in ten Chinese Subpopulations, bioRxiv, 2021, doi: 〈https://doi.org/10.1101/2021.11.08.467710〉.

        • Nicogossian A.
        • Kloiber O.
        • Stabile B.
        The Revised World Medical Association’s Declaration of Helsinki 2013: enhancing the protection of human research subjects and empowering ethics review committees.
        World Med. Health Policy. 2014; 6: 1-3
        • Kidd K.K.
        Proposed nomenclature for microhaplotypes.
        Hum. Genom. 2016; 10: 16
        • Wang M.
        • Fu A.
        • Hu B.
        • Tong Y.
        • Liu R.
        • Liu Z.
        • et al.
        Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses.
        Small. 2020; 16e2002169
        • Li H.
        Minimap2: pairwise alignment for nucleotide sequences.
        Bioinformatics. 2018; 34: 3094-3100
        • Li H.
        • Handsaker B.
        • Wysoker A.
        • Fennell T.
        • Ruan J.
        • Homer N.
        • et al.
        The sequence alignment/map format and SAMtools.
        Bioinformatics. 2009; 25: 2078-2079
        • Sahlin K.
        • Medvedev P.
        Error correction enables use of Oxford Nanopore technology for reference-free transcriptome analysis.
        Nat. Commun. 2021; 12: 2
        • Thorvaldsdottir H.
        • Robinson J.T.
        • Mesirov J.P.
        Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration.
        Brief. Bioinform. 2013; 14: 178-192
        • Wang Z.
        • Zhou D.
        • Wang H.
        • Jia Z.
        • Liu J.
        • Qian X.
        • et al.
        Massively parallel sequencing of 32 forensic markers using the Precision ID GlobalFilerTM NGS STR Panel and the Ion PGMTM System.
        Forensic Sci. Int Genet. 2017; 31: 126-134
        • Wang Z.
        • Wang L.
        • Liu J.
        • Ye J.
        • Hou Y.
        Characterization of sequence variation at 30 autosomal STRs in Chinese Han and Tibetan populations.
        Electrophoresis. 2020; 41: 194-201
        • Shendure J.
        • Balasubramanian S.
        • Church G.M.
        • Gilbert W.
        • Rogers J.
        • Schloss J.A.
        • et al.
        DNA sequencing at 40: past, present and future.
        Nature. 2017; 550: 345-353
        • Parson W.
        • Gusmão L.
        • Hares D.R.
        • Irwin J.A.
        • Mayr W.R.
        • Morling N.
        • et al.
        DNA commission of the international society for forensic genetics: guidelines for mitochondrial DNA typing.
        Forensic Sci. Int. Genet. 2014; 13: 134-142
        • Parson W.
        • Ballard D.
        • Budowle B.
        • Butler J.M.
        • Gettings K.B.
        • Gill P.
        • et al.
        Massively parallel sequencing of forensic STRs: considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements.
        Forensic Sci. Int. Genet. 2016; 22: 54-63
        • Phillips C.
        • Gettings K.B.
        • King J.L.
        • Ballard D.
        • Bodner M.
        • Borsuk L.
        • et al.
        “The devil’s in the detail”: release of an expanded, enhanced and dynamically revised forensic STR sequence guide.
        Forensic Sci. Int. Genet. 2018; 34: 162-169
        • Barrio P.A.
        • García Ó.
        • Phillips C.
        • Prieto L.
        • Gusmão L.
        • Fernández C.
        • et al.
        The first GHEP-ISFG collaborative exercise on forensic applications of massively parallel sequencing.
        Forensic Sci. Int. Genet. 2020; 49102391
        • Ingold S.
        • Dorum G.
        • Hanson E.
        • Berti A.
        • Branicki W.
        • Brito P.
        • et al.
        Body fluid identification using a targeted mRNA massively parallel sequencing approach-result of a EUROFORGEN/EDNAP collaborative exercise.
        Forensic Sci. Int. Genet. 2018; 34: 105-115
        • Ingold S.
        • Dorum G.
        • Hanson E.
        • Ballard D.
        • Berti A.
        • Gettings K.B.
        • et al.
        Body fluid identification and assignment to donors using a targeted mRNA massively parallel sequencing approach – results of a second EUROFORGEN/EDNAP collaborative exercise.
        Forensic Sci. Int. Genet. 2020; 45102208
        • Patel A.
        • Belykh E.
        • Miller E.J.
        • George L.L.
        • Martirosyan N.L.
        • Byvaltsev V.A.
        • et al.
        MinION rapid sequencing: Review of potential applications in neurosurgery.
        Surg. Neurol. Int. 2018; 9: 157
        • Gardy J.L.
        • Loman N.J.
        Towards a genomics-informed, real-time, global pathogen surveillance system.
        Nat. Rev. Genet. 2018; 19: 9-20
        • Van der Verren S.E.
        • Van Gerven N.
        • Jonckheere W.
        • Hambley R.
        • Singh P.
        • Kilgour J.
        • et al.
        A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity.
        Nat. Biotechnol. 2020; 38: 1415-1420
        • Tytgat O.
        • Škevin S.
        • Deforce D.
        • Van Nieuwerburgh F.
        Nanopore sequencing of a forensic combined STR and SNP multiplex.
        Forensic Sci. Int. Genet. 2021; 56102621
        • Rang F.J.
        • Kloosterman W.P.
        • de Ridder J.
        From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy.
        Genome Biol. 2018; 19: 90
        • Magi A.
        • Semeraro R.
        • Mingrino A.
        • Giusti B.
        • D’Aurizio R.
        Nanopore sequencing data analysis: state of the art, applications and challenges.
        Brief. Bioinform. 2018; 19: 1256-1272
        • Lu H.
        • Giordano F.
        • Ning Z.
        Oxford nanopore MinION sequencing and genome assembly.
        Genom. Proteom. Bioinform. 2016; 14: 265-279
        • Loose M.
        • Malla S.
        • Stout M.
        Real-time selective sequencing using nanopore technology.
        Nat. Methods. 2016; 13: 751-754