Advertisement
Research Article| Volume 59, 102690, July 2022

Development and validation of a novel method “SpermX™” for high throughput differential extraction processing of sexual assault kits (SAKs) for DNA analysis

      Highlights

      • New method described for forensic differential extraction.
      • The method, SpermX™, is based on a nanotechnology derived polymer membrane.
      • SpermX™ is amenable to high-throughput automated hands-free workflows.
      • SpermX™ developmental validation studies are described.

      Abstract

      The Sperm X method uses a nanotechnology derived polymer membrane that functions as a separation medium to effectively trap sperm cells while enabling efficient flow through of the digested epithelial cell DNA. This specialized membrane enabled development of a method that could significantly increase a forensic laboratory’s ability to obtain male sperm fraction DNA profiles. The SpermX device provides a rapid, reproducible procedure that is easy to implement in a single-tube format as well as high-throughput truly automated hands-free workflows.
      Validation studies, performed using the manual SpermX method, include sensitivity, stability, precision (reproducibility and repeatability), mixtures, and a method comparison to the traditional differential extraction. Sensitivity and method comparison studies demonstrated a wide range of sperm cells, from a high of over 2.78 million cells (9158 ng) to a low of 25 cells (83 pg), can be trapped by the SpermX membrane. Stability studies on various substrates (i.e., carpet, cotton, denim, polyester, and silk) and degraded semen gave the expected male DNA profiles. Data from the same operator and a different operator were consistent with low variance. Mixtures, with ratios ranging from approximately 10:1–18182:1, created to simulate real casework type samples including buccal/semen, vaginal epithelial/semen, and post coital swabs at different time intervals, were tested. A comparison of the SpermX method to the conventional differential extraction method resulted in comparable probative male profile allelic data and associated statistical probabilities. For low level sperm samples, down to 25 sperm cells (83 pg), the SpermX method outperformed the conventional differential extraction with more genotypic information and associated probabilities.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lowney J.
        • Stewart J.
        • Guilliano M.
        • Staton P.
        Comparison of the QIAcube® to manual differential separation: Man versus Machine.
        in: American Academy of Forensic Sciences, 2013
        • Martinez R.E.
        A novel differential extraction technique utilizing multiple enzymes: developing separation of non-sperm and sperm fractions.
        OpenBU. 2015;
        • Inci F.
        • Ozen M.O.
        • Saylan Y.
        • Miansari M.
        • Cimen D.
        • Dhara R.
        • Semih Calamak K.
        • Yesil Y.
        • Gozde Durmus N.
        • Duncan G.
        • Klevan L.
        • Chinnasamy T.
        • Yuksekkaya M.
        • Filippini C.
        • Kumar D.K.
        • Calamak S.
        • Yesil Y.
        • Durmus N.G.
        • Duncan G.
        • Klevan L.
        • Demirci U.
        A Novel On-Chip Method for Differential Extraction of Sperm in Forensic Cases.
        Adv. Sci. 2018; 5https://doi.org/10.1002/advs.201800121
      1. J. Peterson, D. Johnson, D. Herz, L. Graziano, T. Oehler, Sexual Assualt Kit Backlog Study, (2012). 〈https://www.ncjrs.gov/pdffiles1/nij/grants/238500.pdf〉.

        • Wang C.
        • Wein L.M.
        Analyzing approaches to the backlog of untested sexual assault kits in the USA.
        J. Forensic Sci. 2018; 63: 1110-1121
      2. B. Sison, More than 3,800 untested rape kits in Jefferson County, WBRC. (2018). 〈https://www.wbrc.com/story/38044171/more-than-3800-untested-rape-kits-in-jefferson-county/〉 (accessed September 21, 2021).

        • Hertel N.G.
        Why Minnesota law enforcement agencies have thousands of untested rape kits statewide.
        St. Cloud Times,, 2018 (accessed September 21, 2021)
      3. S. del Rosario, Washington working through rape kit backlog but has several thousand to go, FOX13 News Seattle Washington KCPQ. (2018). 〈https://www.q13fox.com/news/washington-working-through-rape-kit-backlog-but-has-several-thousand-to-go〉 (accessed September 21, 2021).

        • Lagally E.T.
        • Medintz I.
        • Mathies R.A.
        Single-molecule DNA amplification and analysis in an integrated microfluidic device.
        Anal. Chem. 2001; 73: 565-570https://doi.org/10.1021/ac001026b
        • Butler J.M.
        The future of forensic DNA analysis.
        Philos. Trans. R. Soc. B: Biol. Sci. 2015; 370https://doi.org/10.1098/rstb.2014.0252
        • Aboud M.J.
        • Gassmann M.
        • Mccord B.R.
        Ultrafast STR separations on short-channel microfluidic systems for forensic screening and genotyping.
        J. Forensic Sci. 2015; 60: 1164-1170https://doi.org/10.1111/1556-4029.12723
        • Verheij S.
        • Clarisse L.
        • van den Berge M.
        • Sijen T.
        RapidHITTM 200, a promising system for rapid DNA analysis.
        Forensic Sci. Int.: Genet. Suppl. Ser. 2013; 4https://doi.org/10.1016/j.fsigss.2013.10.130
        • Bauer D.W.
        • Butt N.
        • Hornyak J.M.
        • Perlin M.W.
        Validating TrueAllele® Interpretation of DNA Mixtures Containing up to Ten Unknown Contributors.
        J. Forensic Sci. 2020; 65: 380-398https://doi.org/10.1111/1556-4029.14204
        • Bright J.A.
        • Taylor D.
        • McGovern C.
        • Cooper S.
        • Russell L.
        • Abarno D.
        • Buckleton J.
        Developmental validation of STRmixTM, expert software for the interpretation of forensic DNA profiles.
        Forensic Sci. Int.: Genet. 2016; 23: 226-239https://doi.org/10.1016/j.fsigen.2016.05.007
        • Volk P.
        • Holt A.
        • Chen A.
        • Hanson E.
        • Ballantyne J.
        Enhancing the sexual assault workflow: development of a rapid male screening assay incorporating molecular non-microscopic sperm identification.
        Forensic Sci. Int.: Genet. Suppl. Ser. 2019; 7: 21-22https://doi.org/10.1016/j.fsigss.2019.09.010
        • Gill P.
        • Jeffreys A.J.
        • Werrett D.J.
        Forensic application of DNA ‘fingerprints.
        Nature. 1985; 318: 577-579
        • Yoshida K.
        • Sekiguchi K.
        • Mizuno N.
        • Kasai K.
        • Sakai I.
        • Sato H.
        • Seta S.
        The modified method of two-step differential extraction of sperm and vaginal epithelial cell DNA from vaginal fluid mixed with semen.
        Forensic Sci. Int. 1995; 72: 25-33
        • Alsalafi D.
        • Goodwin W.
        Capturing spermatozoa for STR analysis of sexual assault cases using anti-sperm antibodies.
        Forensic Sci. Int.: Genet. Suppl. Ser. 2019; 7: 707-710https://doi.org/10.1016/j.fsigss.2019.10.146
        • Hutchinson S.
        • Chapman B.
        • Turbett G.
        Sperm fishing: antigen-antibody complexes for the capture and enrichment of spermatozoa in mixed cell substrates.
        Aust. J. Forensic Sci. 2019; 51: S95-S98https://doi.org/10.1080/00450618.2019.1573926
        • Elliott K.
        • Hill D.S.
        • Lambert C.
        • Burroughes T.R.
        • Gill P.
        Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides.
        Int. Congr. Ser. 2004; 1261: 45-47https://doi.org/10.1016/S0531-5131(03)01509-7
        • Williamson V.R.
        • Laris T.M.
        • Romano R.
        • Marciano M.A.
        Enhanced DNA mixture deconvolution of sexual offense samples using the DEPArrayTM system.
        Forensic Sci. Int.: Genet. 2018; 34: 265-276https://doi.org/10.1016/j.fsigen.2018.03.001
        • Schoell W.M.J.
        • Klintschar M.
        • Mirhashemi R.
        • Pertl B.
        Separation of sperm and vaginal cells with flow cytometry for DNA typing after sexual assault.
        Obstet. Gynecol. 1999; 94: 623-627https://doi.org/10.1016/S0029-7844(99)00373-7
        • Zhao X.C.
        • Wang L.
        • Sun J.
        • Jiang B.W.
        • Zhang E.L.
        • Ye J.
        Isolating Sperm from Cell Mixtures Using Magnetic Beads Coupled with an Anti-PH-20Antibody for Forensic DNA Analysis.
        PLoS ONE. 2016; 11https://doi.org/10.1371/journal.pone.0159401
        • Li X.-B.
        • Wang Q.-S.
        • Feng Y.
        • Ning S.-H.
        • Miao Y.-Y.
        • Wang Y.-Q.
        • Li H.-W.
        Magnetic bead-based separation of sperm from buccal epithelial cells using a monoclonal antibody against MOSPD3.
        Int. J. Leg. Med. 2014; 128: 905-911
        • Clark C.P.
        • Xu K.
        • Scott O.
        • Hickey J.
        • Tsuei A.C.
        • Jackson K.
        • Landers J.P.
        Acoustic trapping of sperm cells from mock sexual assault samples.
        Forensic Sci. Int.: Genet. 2019; 41: 42-49https://doi.org/10.1016/j.fsigen.2019.03.012
        • Nori D. v
        • McCord B.R.
        The application of alkaline lysis and pressure cycling technology in the differential extraction of DNA from sperm and epithelial cells recovered from cotton swabs.
        Anal. Bioanal. Chem. 2015; 407https://doi.org/10.1007/s00216-015-8737-8
      4. T. Chakrabarty, R. Duszak, M. Runyon, B.-S. Chae, O. Akinbiyi, E. Tanner, P. Korda, Development of an Automated Holographic Optical Trapping Method for Sexual Assault Evidence Kit Analysis (NIJ Award 2009-DN-BX-K260), 2012. 〈http://www.ncdsv.org/images/DevelopmentOfAnAutomatedHolographicOpticalTrappingMethodForSAEvidenceKitAnalysis_8–2012.pdf〉 (accessed October 14, 2021).

        • Valgren C.
        • Edenberger E.
        Evaluation of the DifferexTM System.
        Forensic Sci. Int.: Genet. Suppl. Ser. 2008; 1: 78-79https://doi.org/10.1016/j.fsigss.2007.08.008
        • Garvin A.M.
        • Fischer A.
        • Schnee-Griese J.
        • Jelinski A.
        • Bottinelli M.
        • Soldati G.
        • Tubio M.
        • Castella V.
        • Monney N.
        • Malik N.
        • Madrid M.
        Isolating DNA from sexual assault cases: A comparison of standard methods with a nuclease-based approach.
        Invest. Genet. 2012; 3https://doi.org/10.1186/2041-2223-3-25
        • Garvin A.M.
        • Bottinelli M.
        • Gola M.
        • Conti A.
        • Soldati G.
        DNA preparation from sexual assault cases by selective degradation of contaminating DNA from the victim.
        J. Forensic Sci. 2009; 54: 1297-1303https://doi.org/10.1111/j.1556-4029.2009.01180.x
        • Klein S.B.
        • Buoncristiani M.R.
        Evaluating the efficacy of DNA differential extraction methods for sexual assault evidence.
        Forensic Sci. Int.: Genet. 2017; 29: 109-117https://doi.org/10.1016/j.fsigen.2017.03.021
        • Wong H.
        • Mihalovich J.
        Automation of the Differential Digestion Process of Sexual Assault Evidence.
        J. Forensic Sci. 2019; 64: 539-550https://doi.org/10.1111/1556-4029.13877
        • Chen J.
        • Kobilinsky L.
        • Wolosin D.
        • Shaler R.
        • Baum H.
        A physical method for separating spermatozoa from epithelial cells in sexual assault evidence.
        J. Forensic Sci. 1998; 43: 114-118
      5. C. Ladd, E. Carita, E. Pagliaro, A. Garvin, A. Crumbie, H. Lee, Development of a High-Throughput Method to Isolate Sperm DNA in Sexual Assault Cases (NIJ award 2003-IJ-CX-K013, document 215339), 2006. 〈https://www.ojp.gov/ncjrs/virtual-library/abstracts/development-high-throughput-method-isolate-sperm-dna-sexual-assault〉 (accessed October 14, 2021).

        • Huang Z.M.
        • Zhang Y.Z.
        • Kotaki M.
        • Ramakrishna S.
        A review on polymer nanofibers by electrospinning and their applications in nanocomposites.
        Compos. Sci. Technol. 2003; 63: 2223-2253https://doi.org/10.1016/S0266-3538(03)00178-7
        • Menkhaus T.J.
        • Zhang L.
        • Fong H.
        Applications of electrospun nanofiber membranes for bioseparations.
        Nova Science Publishers, Inc,, 2010
        • Salem D.R.
        In Structure Formation in Polymeric Fibers: Chapter: 6.
        Electro Form. Nanofibers. 2001;
        • Goldstein M.C.
        • Cox J.O.
        • Seman L.B.
        • Cruz T.D.
        Improved resolution of mixed STR profiles using a fully automated differential cell lysis/DNA extraction method.
        Forensic Sci. Res. 2019; 5: 106-112https://doi.org/10.1080/20961790.2019.1646479
        • Timken M.D.
        • Klein S.B.
        • Kubala S.
        • Scharnhorst G.
        • Buoncristiani M.R.
        • Miller K.W.P.
        Automation of the standard DNA differential extraction on the Hamilton AutoLys STAR system: A proof-of-concept study.
        Forensic Sci. Int.: Genet. 2019; 40: 96-104https://doi.org/10.1016/j.fsigen.2019.02.011
        • Marshall P.L.
        • Stoljarova M.
        • Larue B.L.
        • King J.L.
        • Budowle B.
        Evaluation of a novel material, Diomics X-SwabTM, for collection of DNA.
        Forensic Sci. Int.: Genet. 2014; 12: 192-198https://doi.org/10.1016/j.fsigen.2014.05.014
      6. S. SinhaMethod, Apparatus and Kit for Human Identification using Polymer Filter Means for Separation of Sperm Cells from Biological Samples that Include Other Cell Types, US 10,415,031 B2, 2019.

        • Loftus A.
        • Murphy G.
        • Brown H.
        • Montgomery A.
        • Tabak J.
        • Baus J.
        • Carroll M.
        • Green A.
        • Sikka S.
        • Sinha S.
        Development and validation of InnoQuant® HY, a system for quantitation and quality assessment of total human and male DNA using high copy targets.
        Forensic Sci. Int.: Genet. 2017; 29: 205-217https://doi.org/10.1016/j.fsigen.2017.04.009
      7. A. Loftus, C. Krzykwa, E. Simek, R. Kay, K. Miller, S. Sinha, Implementing Nanofiber Materials for Automating Differential Extractions of Sexual Assault Casework Evidence (Poster 028), in: International Symposium on Human Identification, Palm Springs, 2019.

        • Sinha S.
        • Loftus A.
        • Butt N.
        • Kaur H.
        • Pushee T.-L.
        • Brown H.
        • Montgomery A.
        • Khalid J.
        • Montgomery E.
        • Sikka S.
        • Miller K.
        Novel Y-Screening (InnoScreenTM Y) and SpermTrapTM Differential Extraction: Streamlined Sexual Assault Kit Processing.
        in: Northeastern Association of Forensic Scientists, 2018
      8. S.K. Sinha, H. Brown, H. Holt, R. Brown, M. Khan, A.H. Montgomery, J.B. Sgueglia, G. Murphy, A. Loftus, Validation of the SpermXTM method for differential extraction of sperm and epithelial cell DNA from sexual assault kits (SAK), in: International Symposium on Human Identification, InnoGenomics Technologies, Orlando, 2021.

        • Khan M.
        • Effective A.More
        Automatable Differential Extraction Method for Processing Sexual Assault Samples.
        (Masters Thesis) Sam Houston State University,, 2021
      9. E. Simek, L. Janssens, Assessment of an Automated Differential Separation Utilizing a Novel Nanofiber Filter for Sexual Assault Cases, in: International Symposium on Human Identification, Utah Bureau of Forensic Services, Orlando, 2021.

      10. Scientific Working Group on DNA Analysis Methods Validation Guidelines for DNA Analysis Methods, (2016). 〈https://www.swgdam.org/_files/ugd/4344b0_813b241e8944497e99b9c45b163b76bd.pdf〉.

        • Shewale J.G.
        • Sikka S.C.
        • Schneida E.
        • Sinha S.K.
        DNA profiling of azoospermic semen samples from vasectomized males by using Y-PLEX6 Amplification Kit.
        J. Forensic Sci. 2003; 48: 127-129