Advertisement
Research Article| Volume 59, 102707, July 2022

Best of both: A simultaneous analysis of mRNA and miRNA markers for body fluid identification

      Highlights

      • For the first time, a simultaneous mRNA/miRNA assay for body fluid identification was developed on capillary electrophoresis.
      • Assay showed reliable results for single samples, dilutions, and mixtures.
      • First application to older and degraded samples was successfully assessed.

      Abstract

      The body fluid identification of traces found at crime scenes is crucial in relation of the circumstance of crime. For this reason, the body fluid identification (BFI) by molecular biological methods has been increasingly investigated in recent decades. Especially the use of messenger RNA (mRNA) has been established and validated by various studies. mRNAs can resist degradation for several decades under dry and dark environmental conditions, but degradation increases greatly e.g., in humid environments and UV radiation. In contrast, the shorter and protein-protected micro RNAs (miRNAs) are less susceptible to degradation, but not all potential markers are tissue-specific. The aim of this study was to develop a simultaneous mRNA/miRNA multiplex assay to take advantage of both types of RNA. The final assay was tested for various body fluids, dilutions, and mixtures. To demonstrate the advantage of a combined mRNA/miRNA assay, older and mostly degraded samples were examined and compared to an established mRNA assay. Initial results from degraded samples show that tissue-specific miRNAs expected could be detected for 93% of the degraded samples compared to mRNA markers with 25% of the mRNA assay. The result is a simultaneous mRNA/miRNA multiplex assay on capillary electrophoresis (CE) for the first time.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lynch C.
        • Fleming R.
        RNA‐based approaches for body fluid identification in forensic science.
        WIREs Forensic Sci. 2021; 3: 1-23https://doi.org/10.1002/wfs2.1407
        • Salzmann A.P.
        • Bamberg M.
        • Courts C.
        • Dørum G.
        • Gosch A.
        • Hadrys T.
        • Hadzic G.
        • Neis M.
        • Schneider P.M.
        • Sijen T.
        • van den Berge M.
        • Wiegand P.
        • Haas C.
        mRNA profiling of mock casework samples: results of a FoRNAP collaborative exercise.
        Forensic Sci. Int. Genet. 2021; 50https://doi.org/10.1016/j.fsigen.2020.102409
        • Van Den Berge M.
        • Carracedo A.
        • Gomes I.
        • Graham E.A.M.
        • Haas C.
        • Hjort B.
        • Hoff-Olsen P.
        • Maroñas O.
        • Mevåg B.
        • Morling N.
        • Niederstätter H.
        • Parson W.
        • Schneider P.M.
        • Court D.S.
        • Vidaki A.
        • Sijen T.
        A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results.
        Forensic Sci. Int. Genet. 2014; 10: 40-48https://doi.org/10.1016/j.fsigen.2014.01.006
        • Lindenbergh A.
        • Maaskant P.
        • Sijen T.
        Implementation of RNA profiling in forensic casework.
        Forensic Sci. Int. Genet. 2013; 7 (PM - 23036470): 159-166https://doi.org/10.1016/j.fsigen.2012.09.003
        • Zubakov D.
        • Kokshoorn M.
        • Kloosterman A.
        • Kayser M.
        New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains.
        Int. J. Leg. Med. 2009; 123: 71-74https://doi.org/10.1007/s00414-008-0249-z
        • Bamberg M.
        • Dierig L.
        • Kulstein G.
        • Kunz S.N.
        • Schmidt M.
        • Hadrys T.
        • Wiegand P.
        Development and validation of an mRNA-based multiplex body fluid identification workflow and a rectal mucosa marker pilot study.
        Forensic Sci. Int. Genet. 2021; 54102542https://doi.org/10.1016/j.fsigen.2021.102542
        • Kohlmeier F.
        • Schneider P.M.
        Successful mRNA profiling of 23 years old blood stains.
        Forensic Sci. Int. Genet. 2012; 6: 274-276https://doi.org/10.1016/j.fsigen.2011.04.007
        • Fabbri M.
        • Venturi M.
        • Talarico A.
        • Inglese R.
        • Gaudio R.M.
        • Neri M.
        mRNA profiling: application to an old casework.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e380-e382https://doi.org/10.1016/j.fsigss.2017.09.170
        • Setzer M.
        • Juusola J.
        • Ballantyne J.
        Recovery and stability of RNA in vaginal swabs and blood, semen, and saliva stains.
        J. Forensic Sci. 2008; 53: 296-305https://doi.org/10.1111/j.1556-4029.2007.00652.x
        • Sirker M.
        • Schneider P.M.
        • Gomes I.
        A 17-month time course study of human RNA and DNA degradation in body fluids under dry and humid environmental conditions.
        Int. J. Leg. Med. 2016; 130: 1431-1438https://doi.org/10.1007/s00414-016-1373-9
        • Bartel D.P.
        MicroRNAs.
        Cell. 2004; 116: 281-297https://doi.org/10.1016/S0092-8674(04)00045-5
        • Bartel D.P.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233https://doi.org/10.1016/j.cell.2009.01.002
        • He L.
        • Hannon G.J.
        MicroRNAs: small RNAs with a big role in gene regulation.
        Nat. Rev. Genet. 2004; 5: 522-531https://doi.org/10.1038/nrg1379
        • Chen K.
        • Rajewsky N.
        The evolution of gene regulation by transcription factors and microRNAs.
        Nat. Rev. Genet. 2007; 8: 93-103https://doi.org/10.1038/nrg1990
        • Mayes C.
        • Houston R.
        • Seashols-Williams S.
        • LaRue B.
        • Hughes-Stamm S.
        The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples.
        Leg. Med. 2019; 38: 45-50https://doi.org/10.1016/j.legalmed.2019.03.007
        • Li Z.
        • Chen D.
        • Wang Q.
        • Tian H.
        • Tan M.
        • Peng D.
        • Tan Y.
        • Zhu J.
        • Liang W.
        • Zhang L.
        mRNA and microRNA stability validation of blood samples under different environmental conditions.
        Forensic Sci. Int. Genet. 2021; 55102567https://doi.org/10.1016/j.fsigen.2021.102567
        • Kotorashvili A.
        • Ramnauth A.
        • Liu C.
        • Lin J.
        • Ye K.
        • Kim R.
        • Hazan R.
        • Rohan T.
        • Fineberg S.
        • Loudig O.
        Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens.
        PLoS One. 2012; 7 (PM - 22514653)e34683https://doi.org/10.1371/journal.pone.0034683
        • Kulstein G.
        • Schacker U.
        • Wiegand P.
        Old meets new: comparative examination of conventional and innovative RNA-based methods for body fluid identification of laundered seminal fluid stains after modular extraction of DNA and RNA.
        Forensic Sci. Int. Genet. 2018; 36: 130-140https://doi.org/10.1016/j.fsigen.2018.06.017
        • Courts C.
        • Madea B.
        Micro-RNA - a potential for forensic science?.
        Forensic Sci. Int. 2010; 203: 106-111https://doi.org/10.1016/j.forsciint.2010.07.002
        • Li Z.
        • Bai P.
        • Peng D.
        • Wang H.
        • Guo Y.
        • Jiang Y.
        • He W.
        • Tian H.
        • Yang Y.
        • Huang Y.
        • Long B.
        • Liang W.
        • Zhang L.
        Screening and confirmation of microRNA markers for distinguishing between menstrual and peripheral blood.
        Forensic Sci. Int. Genet. 2017; 30: 24-33https://doi.org/10.1016/j.fsigen.2017.05.012
        • Wang Z.
        • Zhang J.
        • Luo H.
        • Ye Y.
        • Yan J.
        • Hou Y.
        Screening and confirmation of microRNA markers for forensic body fluid identification.
        Forensic Sci. Int. Genet. 2013; 7: 116-123https://doi.org/10.1016/j.fsigen.2012.07.006
        • Sauer E.
        • Reinke A.K.
        • Courts C.
        Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR.
        Forensic Sci. Int. Genet. 2016; 22: 89-99https://doi.org/10.1016/j.fsigen.2016.01.018
        • Wang S.
        • Wang Z.
        • Tao R.
        • He G.
        • Liu J.
        • Li C.
        • Hou Y.
        The potential use of Piwi-interacting RNA biomarkers in forensic body fluid identification: a proof-of-principle study.
        Forensic Sci. Int. Genet. 2019; 39: 129-135https://doi.org/10.1016/j.fsigen.2019.01.002
        • Wang S.
        • Wang Z.
        • Tao R.
        • Wang M.
        • Liu J.
        • He G.
        • Yang Y.
        • Xie M.
        • Zou X.
        • Hou Y.
        Expression profile analysis of piwi-interacting RNA in forensically relevant biological fluids.
        Forensic Sci. Int. Genet. 2019; 42: 171-180https://doi.org/10.1016/j.fsigen.2019.07.015
        • Simon B.
        • Kirkpatrick J.P.
        • Eckhardt S.
        • Reuter M.
        • Rocha E.A.
        • Andrade-Navarro M.A.
        • Sehr P.
        • Pillai R.S.
        • Carlomagno T.
        Recognition of 2′-o-methylated 3′-end of piRNA by the PAZ domain of a Piwi protein.
        Structure. 2011; 19: 172-180https://doi.org/10.1016/j.str.2010.11.015
        • Martinez V.D.
        • Vucic E.A.
        • Thu K.L.
        • Hubaux R.
        • Enfield K.S.S.
        • Pikor L.A.
        • Becker-Santos D.D.
        • Brown C.J.
        • Lam S.
        • Lam W.L.
        Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology.
        Sci. Rep. 2015; 5: 1-17https://doi.org/10.1038/srep10423
        • Li Y.
        • Zhang J.
        • Wei W.
        • Wang Z.
        • Prinz M.
        • Hou Y.
        A strategy for co-analysis of microRNAs and DNA.
        Forensic Sci. Int. Genet. 2014; 12 (PM - 24858406): 24-29https://doi.org/10.1016/j.fsigen.2014.04.011
        • Van Den Berge M.
        • Bhoelai B.
        • Harteveld J.
        • Matai A.
        • Sijen T.
        Forensic Science International: Genetics Advancing forensic RNA typing: on non-target secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA pro fi ling.
        Forensic Sci. Int. Genet. 2016; 20: 119-129https://doi.org/10.1016/j.fsigen.2015.10.011
        • Albani P.P.
        • Fleming R.
        Novel messenger RNAs for body fluid identification.
        Sci. Justice. 2018; 58: 145-152https://doi.org/10.1016/j.scijus.2017.09.002
        • Hanson E.K.
        • Lubenow H.
        • Ballantyne J.
        Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs.
        Anal. Biochem. 2009; 387: 303-314https://doi.org/10.1016/j.ab.2009.01.037
        • Liu B.
        • Yang Q.
        • Meng H.
        • Shao C.
        • Jiang J.
        • Xu H.
        • Sun K.
        • Zhou Y.
        • Yao Y.
        • Zhou Z.
        • Li H.
        • Shen Y.
        • Zhao Z.
        • Tang Q.
        • Xie J.
        Development of a multiplex system for the identification of forensically relevant body fluids.
        Forensic Sci. Int. Genet. 2020; 47 (PM - 32480323)102312https://doi.org/10.1016/j.fsigen.2020.102312
        • Park J.L.
        • Park S.M.
        • Kwon O.H.
        • Chul Lee H.
        • Young Kim J.
        • Seok H.H.
        • Lee W.S.
        • Lee S.H.
        • Kim Y.S.
        • Woo K.M.
        • Kim S.Y.
        Microarray screening and qRT-PCR evaluation of microRNA markers for forensic body fluid identification.
        Electrophoresis. 2014; 35: 3062-3068https://doi.org/10.1002/elps.201400075
        • Sirker M.
        • Fimmers R.
        • Schneider P.M.
        • Gomes I.
        Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification.
        Forensic Sci. Int. Genet. 2017; 27: 41-49https://doi.org/10.1016/j.fsigen.2016.11.012
        • Albani P.P.
        • Patel J.
        • Fleming R.I.
        Detection of five specified menstrual fluid mRNA markers over the uterine cycle.
        Forensic Sci. Int. Genet. 2020; 49102359https://doi.org/10.1016/j.fsigen.2020.102359
        • Fujimoto S.
        • Manabe S.
        • Morimoto C.
        • Ozeki M.
        • Hamano Y.
        • Tamaki K.
        Optimal small-molecular reference RNA for RT-qPCR-based body fluid identification.
        Forensic Sci. Int. Genet. 2018; 37: 135-142https://doi.org/10.1016/j.fsigen.2018.08.010
        • Harbison S.
        • Fleming R.
        Forensic body fluid identification: state of the art.
        Res. Rep. Forensic Med. Sci. 2016; : 11https://doi.org/10.2147/RRFMS.S57994
        • Zubakov D.
        • Boersma A.W.M.
        • Choi Y.
        • Van Kuijk P.F.
        • Wiemer E.A.C.
        • Kayser M.
        MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation.
        Int. J. Leg. Med. 2010; 124: 217-226https://doi.org/10.1007/s00414-009-0402-3
        • Wang Z.
        • Zhang J.
        • Wei W.
        • Zhou D.
        • Luo H.
        • Chen X.
        • Hou Y.
        Identification of saliva using MicroRNA biomarkers for forensic purpose.
        J. Forensic Sci. 2015; 60: 702-706https://doi.org/10.1111/1556-4029.12730
        • Ji X.
        • Wang M.
        • Li L.
        • Chen F.
        • Zhang Y.
        • Li Q.
        • Zhou J.
        The impact of repeated freeze-thaw cycles on the quality of biomolecules in four different tissues.
        Biopreserv. Biobank. 2017; 15: 475-483https://doi.org/10.1089/bio.2017.0064