Advertisement
Letter| Volume 59, 102709, July 2022

Re: Riman et al. Examining performance and likelihood ratios for two likelihood ratio systems using the PROVEDIt dataset

      The editors,

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Riman S.
        • Iyer H.
        • Vallone P.M.
        Examining performance and likelihood ratios for two likelihood ratio systems using the PROVEDIt dataset.
        PLoS One. 2021; 16e0256714
        • Alfonse L.E.
        • Garrett A.D.
        • Lun D.S.
        • Duffy K.R.
        • Grgicak C.M.
        A large-scale dataset of single and mixed-source short tandem repeat profiles to inform human identification strategies: PROVEDIt.
        Forensic Sci. Int. Genet. 2018; 32: 62-70
        • Cheng K.
        • Bleka Ø.
        • Gill P.
        • Curran J.
        • Bright J.-A.
        • Taylor D.
        • Buckleton J.
        A comparison of likelihood ratios obtained from EuroForMix and STRmixTM.
        J. Forensic Sci. 2021; 66: 2138-2155
        • Lin M.-H.
        • Lee S.-I.
        • Zhang X.
        • Russell L.
        • Kelly H.
        • Cheng K.
        • et al.
        Developmental validation of FaSTRTM DNA: Software for the analysis of forensic DNA profiles.
        Forensic Sci. Int. Rep. 2021; 3100217
        • Russell L.
        • Cooper S.
        • Wivell R.
        • Kerr Z.
        • Taylor D.
        • Buckleton J.
        • et al.
        A guide to results and diagnostics within a STRmixTM report.
        WIREs Forensic Sci. 2019; 1e1354
        • Taylor D.
        • Buckleton J.
        • Bright J.-A.
        Factors affecting peak height variability for short tandem repeat data.
        Forensic Sci. Int. Genet. 2016; 21: 126-133
        • Grgicak C.M.
        • Duffy K.R.
        • Lun D.S.
        The a posteriori probability of the number of contributors when conditioned on an assumed contributor.
        Forensic Sci. Int. Genet. 2021; 54102563
        • Valtl J.
        • Mönich U.J.
        • Lun D.S.
        • Kelley J.
        • Grgicak C.M.
        A series of developmental validation tests for Number of Contributors platforms: exemplars using NOCIt and a neural network.
        Forensic Sci. Int. Genet. 2021; 54102556
        • National Research Council II
        National Research Council Committee on DNA Forensic Science, The Evaluation of Forensic DNA Evidence.
        National Academy Press, Washington, D.C1996
        • Kelly H.
        • Bright J.-A.
        • Kruijver M.
        • Cooper S.
        • Taylor D.
        • Duke K.
        • et al.
        A sensitivity analysis to determine the robustness of STRmixTM with respect to laboratory calibration.
        Forensic Sci. Int. Genet. 2018; 35: 113-122
        • Moretti T.R.
        • Just R.S.
        • Kehl S.C.
        • Willis L.E.
        • Buckleton J.S.
        • Bright J.-A.
        • et al.
        Internal validation of STRmix for the interpretation of single source and mixed DNA profiles.
        Forensic Sci. Int. Genet. 2017; 29: 126-144
        • Bright J.-A.
        • Taylor D.
        • McGovern C.E.
        • Cooper S.
        • Russell L.
        • Abarno D.
        • et al.
        Developmental validation of STRmixTM, expert software for the interpretation of forensic DNA profiles.
        Forensic Sci. Int. Genet. 2016; 23: 226-239
        • Buckleton J.S.
        • Bright J.-A.
        • Cheng K.
        • Budowle B.
        • Coble M.D.
        NIST interlaboratory studies involving DNA mixtures (MIX13): a modern analysis.
        Forensic Sci. Int. Genet. 2018; 37: 172-179
        • Ramos D.
        • Gonzalez-Rodriguez J.
        Reliable support: measuring calibration of likelihood ratios.
        Forensic Sci. Int. 2013; 230: 156-169
        • Bright J.-A.
        • Jones Dukes M.
        • Pugh S.N.
        • Evett I.W.
        • Buckleton J.S.
        Applying calibration to LRs produced by a DNA interpretation software.
        Aust. J. Forensic Sci. 2019; : 1-7
        • Cheng K.
        • Skillman J.
        • Hickey S.
        • Just R.
        • Moreno L.
        • Bright J.-A.
        • et al.
        Variability and additivity of read counts for aSTRs in NGS DNA profiles.
        Forensic Sci. Int. Genet. 2020; : 48
        • Clopper C.J.
        • Pearson E.S.
        The use of confidence or fiducial intervals illustrated in the case of the binomial.
        Biometrika. 1934; 26: 404-413