Advertisement

A tool for simulating single source and mixed DNA profiles

      Highlights

      • A tool to simulate single source and mixed profiles.
      • Peak heights follow a log normal or gamma distribution.
      • Contributors may be related according to a pedigree.
      • An R package named simDNAmixtures is freely available from CRAN.

      Abstract

      Simulation studies play an important role in the study of probabilistic genotyping systems, as a low cost and fast alternative to in vitro studies. With ongoing calls for further study of the behaviour of probabilistic genotyping systems, there is a continuous need for such studies. In most cases, researchers use simplified models, for example ignoring complexities such as peak height variability due to lack of availability of advanced tools. We fill this void and describe a tool that can simulate DNA profiles in silico for the validation and investigation of probabilistic genotyping software. Contributor genotypes are simulated by randomly sampling alleles from selected allele frequencies. Some or all contributors may be related to a pedigree and the genotypes of non-founders are obtained by random gene dropping. The number of contributors per profile, and ranges for parameters such as DNA template amount and degradation parameters can be configured. Peak height variability is modelled using a lognormal distribution or a gamma distribution. Profile behaviour of simulated profiles is shown to be broadly similar to laboratory generated profiles though the latter shows more variation. Simulation studies do not remove the need for experimental data. The tool has been made available as an R-package named simDNAmixtures.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Coble M.D.
        • Bright J.-A.
        Probabilistic genotyping software: an overview.
        Forensic Sci. Int. Genet. 2019; 38: 219-224
      1. Scientific Working Group on DNA Analysis Methods (SWGDAM), Guidelines for the Validation of Probabilistic Genotyping Systems. 〈http://media.wix.com/ugd/4344b0_22776006b67c4a32a5ffc04fe3b56515.pdf〉, 2015 (Accessed 3 October 2016.).

        • Coble M.D.
        • Buckleton J.
        • Butler J.M.
        • Egeland T.
        • Fimmers R.
        • Gill P.
        • Gusmão L.
        • Guttman B.
        • Krawczak M.
        • Morling N.
        • Parson W.
        • Pinto N.
        • Schneider P.M.
        • Sherry S.T.
        • Willuweit S.
        • Prinz M.
        DNA commission of the international society for forensic genetics: recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications.
        Forensic Sci. Int Genet. 2016; 25: 191-197
        • Bright J.-A.
        • Coble M.D.
        Forensic DNA Profiling: A Practical Guide to Assigning Likelihood Ratios.
        Boca Raton FL. CRC Press,, 2019
        • Benschop C.C.G.
        • Nijveld A.
        • Duijs F.E.
        • Sijen T.
        An assessment of the performance of the probabilistic genotyping software EuroForMix: Trends in likelihood ratios and analysis of Type I & II errors.
        Forensic Sci. Int. Genet. 2019; 42: 31-38
        • Bright J.-A.
        • Taylor D.
        • McGovern C.E.
        • Cooper S.
        • Russell L.
        • Abarno D.
        • Buckleton J.S.
        Developmental validation of STRmix™, expert software for the interpretation of forensic DNA profiles.
        Forensic Sci. Int. Genet. 2016; 23: 226-239
        • Perlin M.W.
        • Legler M.M.
        • Spencer C.E.
        • Smith J.L.
        • Allan W.P.
        • Belrose J.L.
        • Duceman B.W.
        Validating TrueAllele® DNA mixture interpretation.
        J. Forensic Sci. 2011; 56: 1430-1447
        • Benschop C.C.G.
        • Hoogenboom J.
        • Hovers P.
        • Slagter M.
        • Kruise D.
        • Parag R.
        • Steensma K.
        • Slooten K.
        • Nagel J.H.A.
        • Dieltjes P.
        • van Marion V.
        • van Paassen H.
        • de Jong J.
        • Creeten C.
        • Sijen T.
        • Kneppers A.L.J.
        DNAxs/DNAStatistX: Development and validation of a software suite for the data management and probabilistic interpretation of DNA profiles.
        Forensic Sci. Int. Genet. 2019; 42: 81-89
        • Adamowicz M.
        • Clarke J.
        • Rambo T.
        • Makam H.
        • Copeland S.
        • Erb D.
        • Hendricks K.
        • McGuigan J.
        • Prosser C.
        • Todd J.
        • Snyder-Leiby T.
        Validation of MaSTRTM software: Extensive study of fully-continuous probabilistic mixture analysis using PowerPlex®Fusion 2 – 5 contributor mixtures.
        Forensic Sc. i Int. Genet. Suppl. Ser. 2019; 7: 641-643
      2. PCAST, Report to the President, Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-comparison Methods. References, Executive Office of the President of the United States, President's Council …, 2016.

      3. J.M. Butler, H. Iyer, R. Press, M.K. Taylor, P.M. Vallone, S. Willis, NISTIR 8351-DRAFT. DNA Mixture Interpretation: A NIST Scientific Foundation Review. 〈https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8351-draft.pdf〉, 2021 (accessed 23 August 2021.).

        • Alfonse L.E.
        • Garrett A.D.
        • Lun D.S.
        • Duffy K.R.
        • Grgicak C.M.
        A large-scale dataset of single and mixed-source short tandem repeat profiles to inform human identification strategies: PROVEDIt.
        Forensic Sci. Int. Genet. 2018; 32: 62-70
        • Kelly H.
        • Bright J.-A.
        • Kruijver M.
        • Cooper S.
        • Taylor D.
        • Duke K.
        • Strong M.
        • Beamer V.
        • Buettner C.
        • Buckleton J.
        A sensitivity analysis to determine the robustness of STRmix™ with respect to laboratory calibration.
        Forensic Sci. Int. Genet. 2018; 35: 113-122
        • Kruijver M.
        • Bright J.-A.
        • Kelly H.
        • Buckleton J.
        Exploring the probative value of mixed DNA profiles.
        Forensic Sci. Int. Genet. 2019; 41: 1-10
        • Taylor D.
        • Bright J.-A.
        • Scandrett L.
        • Abarno D.
        • Lee S.-I.
        • Wivell R.
        • Kelly H.
        • Buckleton J.
        Validation of a top-down DNA profile analysis for database searching using a fully continuous probabilistic genotyping model.
        Forensic Sci. Int. Genet. 2021; 52102479
        • Lin M.-H.
        • Lee S.-I.
        • Zhang X.
        • Russell L.
        • Kelly H.
        • Cheng K.
        • Cooper S.
        • Wivell R.
        • Kerr Z.
        • Morawitz J.
        • Bright J.-A.
        Developmental validation of FaSTRTM DNA: Software for the analysis of forensic DNA profiles.
        Forensic Sci. Int.: Rep. 2021; 3100217
        • Buckleton J.S.
        • Pugh S.N.
        • Bright J.-A.
        • Taylor D.A.
        • Curran J.M.
        • Kruijver M.
        • Gill P.
        • Budowle B.
        • Cheng K.
        Are low LRs reliable?.
        Forensic Sci. Int. Genet. 2020; 49102350
        • Bright J.-A.
        • Taylor D.
        • Kerr Z.
        • Buckleton J.
        • Kruijver M.
        The efficacy of DNA mixture to mixture matching.
        Forensic Sci. Int. Genet. 2019; 41: 64-71
        • McGovern C.
        • Cheng K.
        • Kelly H.
        • Ciecko A.
        • Taylor D.
        • Buckleton J.S.
        • Bright J.-A.
        Performance of a method for weighting a range in the number of contributors in probabilistic genotyping.
        Forensic Sci. Int. Genet. 2020; 48102352
        • Riman S.
        • Iyer H.
        • Vallone P.M.
        Exploring DNA interpretation software using the PROVEDIt dataset.
        Forensic Sc. i Int. Genet. Suppl. Ser. 2019; 7: 724-726
        • Hannig J.
        • Riman S.
        • Iyer H.
        • Vallone P.M.
        Are reported likelihood ratios well calibrated?.
        Forensic Sc. i Int. Genet. Suppl. Ser. 2019; 7: 572-574
        • Swaminathan H.
        • Grgicak C.M.
        • Medard M.
        • Lun D.S.
        NOCIt: a computational method to infer the number of contributors to DNA samples analyzed by STR genotyping.
        Forensic Sci. Int. Genet. 2015; 16: 172-180
        • Kruijver M.
        • Kelly H.
        • Cheng K.
        • Lin M.-H.
        • Morawitz J.
        • Russell L.
        • Buckleton J.
        • Bright J.-A.
        Estimating the number of contributors to a DNA profile using decision trees.
        Forensic Sci. Int. Genet. 2021; 50102407
        • Taylor D.
        • Bright J.-A.
        • Buckleton J.
        The interpretation of single source and mixed DNA profiles.
        Forensic Sci. Int.: Genet. 2013; 7: 516-528
        • Cowell R.G.
        • Graversen T.
        • Lauritzen S.L.
        • Mortera J.
        Analysis of forensic DNA mixtures with artefacts.
        J. R. Stat. Soc.: Ser. C. (Appl. Stat. ). 2015; 64: 1-48
        • Cowell R.G.
        • Lauritzen S.L.
        • Mortera J.
        A gamma model for DNA mixture analyses.
        Bayesian Anal. 2007; 2: 333-348
        • Bleka Ø.
        • Storvik G.
        • Gill P.
        EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts.
        Forensic Sci. Int.: Genet. 2016; 21: 35-44
      4. M. Kruijver, simDNAmixtures: Simulate Forensic DNA Mixtures (R package), 2022.

      5. M.D. Vigeland, pedtools: Creating and Working with Pedigrees and Marker Data (R package), 2022.

        • Vigeland M.D.
        Pedigree Analysis in R.
        Academic Press, 2021
        • Gill P.
        • Benschop C.
        • Buckleton J.
        • Bleka Ø.
        • Taylor D.
        A review of probabilistic genotyping systems: EuroForMix, DNAStatistX and STRmixTM.
        Genes. 2021; 12: 1559
        • Bright J.-A.
        • Taylor D.
        • McGovern C.
        • Cooper S.
        • Russell L.
        • Abarno D.
        • Buckleton J.
        Developmental validation of STRmixTM, expert software for the interpretation of forensic DNA profiles.
        Forensic Sci. Int.: Genet. 2016; 23: 226-239
        • Kalafut T.
        • Schuerman C.
        • Sutton J.
        • Faris T.
        • Armogida L.
        • Bright J.-A.
        • Buckleton J.
        • Taylor D.
        Implementation and validation of an improved allele specific stutter filtering method for electropherogram interpretation.
        Forensic Sci. Int.: Genet. 2018; 35: 50-56
        • Taylor D.
        • Bright J.-A.
        • McGoven C.
        • Hefford C.
        • Kalafut T.
        • Buckleton J.
        Validating multiplexes for use in conjunction with modern interpretation strategies.
        Forensic Sci. Int.: Genet. 2016; 20: 6-19
        • Moretti T.R.
        • Moreno L.I.
        • Smerick J.B.
        • Pignone M.L.
        • Hizon R.
        • Buckleton J.S.
        • Bright J.-A.
        • Onorato A.J.
        Population data on the expanded CODIS core STR loci for eleven populations of significance for forensic DNA analyses in the United States.
        Forensic Sci. Int. Genet. 2016; 25: 175-181
        • Moretti T.R.
        • Just R.S.
        • Kehl S.C.
        • Willis L.E.
        • Buckleton J.S.
        • Bright J.-A.
        • Taylor D.A.
        • Onorato A.J.
        Internal validation of STRmix for the interpretation of single source and mixed DNA profiles.
        Forensic Sci. Int. Genet. 2017; 29: 126-144
        • Taylor D.
        Using continuous DNA interpretation methods to revisit likelihood ratio behaviour.
        Fore. Sci. Int.: Genet. 2014; 11: 144-153
        • Taylor D.
        • Kruijver M.
        Combining evidence across multiple mixed DNA profiles for improved resolution of a donor when a common contributor can be assumed.
        Forensic Sci. Int.: Genet. 2020; 49102375
        • Allen P.S.
        • Pugh S.N.
        • Bright J.-A.
        • Taylor D.A.
        • Curran J.M.
        • Kerr Z.
        • Buckleton J.S.
        Relaxing the assumption of unrelatedness in the numerator and denominator of likelihood ratios for DNA mixtures.
        Forensic Sci. Int.: Genet. 2021; 51102434