Highlights
- ●Transfer and persistence data of DNA and mRNA vaginal mucosa marker
- ●Bayesian network analysis to evaluate the evidence at activity level
- ●The LR value was mainly affected by the high DNA quantity
Abstract
Keywords
1. Introduction
- Haas C.
- Hanson E.
- Anjos M.J.
- Bar W.
- Banemann R.
- Berti A.
- Borges E.
- Bouakaze C.
- Carracedo A.
- Carvalho M.
- Castella V.
- Choma A.
- De Cock G.
- Dotsch M.
- Hoff-Olsen P.
- Johansen P.
- Kohlmeier F.
- Lindenbergh P.A.
- Ludes B.
- Maronas O.
- Moore D.
- Morerod M.L.
- Morling N.
- Niederstatter H.
- Noel F.
- Parson W.
- Patel G.
- Popielarz C.
- Salata E.
- Schneider P.M.
- Sijen T.
- Sviezena B.
- Turanska M.
- Zatkalikova L.
- Ballantyne J.
- Haas C.
- Hanson E.
- Anjos M.J.
- Banemann R.
- Berti A.
- Borges E.
- Carracedo A.
- Carvalho M.
- Courts C.
- De Cock G.
- Dotsch M.
- Flynn S.
- Gomes I.
- Hollard C.
- Hjort B.
- Hoff-Olsen P.
- Hribikova K.
- Lindenbergh A.
- Ludes B.
- Maronas O.
- McCallum N.
- Moore D.
- Morling N.
- Niederstatter H.
- Noel F.
- Parson W.
- Popielarz C.
- Rapone C.
- Roeder A.D.
- Ruiz Y.
- Sauer E.
- Schneider P.M.
- Sijen T.
- Court D.S.
- Sviezena B.
- Turanska M.
- Vidaki A.
- Zatkalikova L.
- Ballantyne J.
- Haas C.
- Hanson E.
- Anjos M.J.
- Ballantyne K.N.
- Banemann R.
- Bhoelai B.
- Borges E.
- Carvalho M.
- Courts C.
- De Cock G.
- Drobnic K.
- Dotsch M.
- Fleming R.
- Franchi C.
- Gomes I.
- Hadzic G.
- Harbison S.A.
- Harteveld J.
- Hjort B.
- Hollard C.
- Hoff-Olsen P.
- Huls C.
- Keyser C.
- Maronas O.
- McCallum N.
- Moore D.
- Morling N.
- Niederstatter H.
- Noel F.
- Parson W.
- Phillips C.
- Popielarz C.
- Roeder A.D.
- Salvaderi L.
- Sauer E.
- Schneider P.M.
- Shanthan G.
- Court D.S.
- Turanska M.
- van Oorschot R.A.
- Vennemann M.
- Vidaki A.
- Zatkalikova L.
- Ballantyne J.
- van den Berge M.
- Carracedo A.
- Gomes I.
- Graham E.A.
- Haas C.
- Hjort B.
- Hoff-Olsen P.
- Maronas O.
- Mevag B.
- Morling N.
- Niederstatter H.
- Parson W.
- Schneider P.M.
- Court D.S.
- Vidaki A.
- Sijen T.
- Haas C.
- Hanson E.
- Anjos M.J.
- Ballantyne K.N.
- Banemann R.
- Bhoelai B.
- Borges E.
- Carvalho M.
- Courts C.
- De Cock G.
- Drobnic K.
- Dotsch M.
- Fleming R.
- Franchi C.
- Gomes I.
- Hadzic G.
- Harbison S.A.
- Harteveld J.
- Hjort B.
- Hollard C.
- Hoff-Olsen P.
- Huls C.
- Keyser C.
- Maronas O.
- McCallum N.
- Moore D.
- Morling N.
- Niederstatter H.
- Noel F.
- Parson W.
- Phillips C.
- Popielarz C.
- Roeder A.D.
- Salvaderi L.
- Sauer E.
- Schneider P.M.
- Shanthan G.
- Court D.S.
- Turanska M.
- van Oorschot R.A.
- Vennemann M.
- Vidaki A.
- Zatkalikova L.
- Ballantyne J.
- Haas C.
- Hanson E.
- Anjos M.J.
- Ballantyne K.N.
- Banemann R.
- Bhoelai B.
- Borges E.
- Carvalho M.
- Courts C.
- De Cock G.
- Drobnic K.
- Dotsch M.
- Fleming R.
- Franchi C.
- Gomes I.
- Hadzic G.
- Harbison S.A.
- Harteveld J.
- Hjort B.
- Hollard C.
- Hoff-Olsen P.
- Huls C.
- Keyser C.
- Maronas O.
- McCallum N.
- Moore D.
- Morling N.
- Niederstatter H.
- Noel F.
- Parson W.
- Phillips C.
- Popielarz C.
- Roeder A.D.
- Salvaderi L.
- Sauer E.
- Schneider P.M.
- Shanthan G.
- Court D.S.
- Turanska M.
- van Oorschot R.A.
- Vennemann M.
- Vidaki A.
- Zatkalikova L.
- Ballantyne J.
- Gill P.
- Hicks T.
- Butler J.M.
- Connolly E.
- Gusmao L.
- Kokshoorn B.
- Morling N.
- van Oorschot R.A.H.
- Parson W.
- Prinz M.
- Schneider P.M.
- Sijen T.
- Taylor D.
- Gill P.
- Hicks T.
- Butler J.M.
- Connolly E.
- Gusmao L.
- Kokshoorn B.
- Morling N.
- van Oorschot R.A.H.
- Parson W.
- Prinz M.
- Schneider P.M.
- Sijen T.
- Taylor D.
2. Method
2.1 Ethical declaration
2.2 Sample collection
2.2.1 Preparation of sample kits
2.2.2 Pilot study
2.2.3 Sample collection after intimate contact (transfer and persistence samples)
2.2.4 Sample collection after non-intimate contact (prevalence and background samples) and DNA reference sample
- Gill P.
- Hicks T.
- Butler J.M.
- Connolly E.
- Gusmao L.
- Kokshoorn B.
- Morling N.
- van Oorschot R.A.H.
- Parson W.
- Prinz M.
- Schneider P.M.
- Sijen T.
- Taylor D.
2.3 Sample processing

2.3.1 DNA and RNA co-extraction
2.3.2 DNA extraction of reference samples
2.3.3 RNA analysis
- –Body fluid detected: ≥ 50 % of the body fluid markers were observed (based on the number of valid RNA profiles and the number of markers detected for the actual body fluid)
- –Body fluid sporadically detected: < 50 % of body fluid markers were observed
- –Body fluid not detected: no mRNA markers for the body fluid observed
- –Observed and fits with: If a marker is detected and co-expressed with a different body fluid, for instance the presence of saliva marker STATH in nasal mucosa.
2.3.4 DNA analysis
t-tests were carried out to determine if expected was the same between intimate contact and non-intimate contact samples (5% significance level).
2.4 Bayesian network (BN) analysis
- Gill P.
- Hicks T.
- Butler J.M.
- Connolly E.
- Gusmao L.
- Kokshoorn B.
- Morling N.
- van Oorschot R.A.H.
- Parson W.
- Prinz M.
- Schneider P.M.
- Sijen T.
- Taylor D.
2.4.1 Case circumstances
- 1)A victim claims to be sexually assaulted by a suspect and alleges that vaginal penetration occurred.
- 2)The victim and the suspect have had previous non-intimate contact. They may co-habit or share facilities in an apartment, for example.
- 3)The suspect denies the allegations stating that he only had social contact with the victim.
- 4)There is no allegation that the assault was committed by an unknown individual
- Gill P.
- Hicks T.
- Butler J.M.
- Connolly E.
- Gusmao L.
- Kokshoorn B.
- Morling N.
- van Oorschot R.A.H.
- Parson W.
- Prinz M.
- Schneider P.M.
- Sijen T.
- Taylor D.
2.4.2 Bayesian network
- Gill P.
- Hicks T.
- Butler J.M.
- Connolly E.
- Gusmao L.
- Kokshoorn B.
- Morling N.
- van Oorschot R.A.H.
- Parson W.
- Prinz M.
- Schneider P.M.
- Sijen T.
- Taylor D.

2.4.2.1 BN summary
- 1)Either victim (V) and suspect (S) had sexual intercourse, or they only cohabited (blue nodes).
- 2)If there is a positive RNA test for vaginal mucosa recovered from S penis then this occurred either from co-habitation (e.g., where common surfaces were touched) or from vaginal penetration (yellow nodes).
- 3)If DNA from V was recovered from S penis, then this occurred either from co-habitation or from vaginal penetration (yellow nodes).
- 4)In the second layer of yellow nodes: either vaginal mucosa RNA is present on S penis or it is absent. Similarly, DNA from the victim is either present or absent.
- 5)Background vaginal mucosa RNA and background DNA (grey nodes) refer to material from unknown individuals.
- 6)The results nodes, coloured red, calculate likelihood ratios from vaginal mucosa test results, DNA results and combined DNA/ vaginal mucosa test results.
2.4.3 List of variables for Bayesian network analysis
Notation | Definition |
---|---|
t | the probability of direct transfer, persistence and recovery of DNA/RNA from the POI (under Hp only) |
t' | the probability of direct transfer, persistence and recovery of DNA/RNA from an unknown contributor (under Hd only) |
b | the probability of background (DNA or RNA), based on observations, applied under both Hp and Hd. Background DNA is present from unknown sources and unknown activities. It can be described as ‘foreign’ (non-self). For further details we refer to Section 3.2 in [37] . |
s | the probability of indirect transfer, persistence and recovery of DNA/RNA |
x | decision threshold value based upon |
node V | Vaginal mucosa RNA test results (Bayesian network) |
node D | DNA results (Bayesian network) |
node DV | Combined DNA/ Vaginal mucosa RNA test results (Bayesian network) |
V+ or V- | Positive (+) or negative (-) test for vaginal mucosa (Bayesian network) |
D+ or D- | Presence (+) or absence (-) of DNA (Bayesian network) |
2.4.4 Formulae used to calculate likelihood ratios
2.4.4.1 DNA results
2.4.4.2 Vaginal mucosa test results
2.4.4.3 Combining DNA results with vaginal mucosa test result (node DV)
where is a threshold value of . There are four possible combined outcomes of (conditioning omitted for brevity) listed below, obtained by summation of (log10) results, where the term is dependent upon D:
2.4.5 Distribution fitting
3. Results
3.1 DNA profiling
Sample type | Sampling time | Average no. of hand wash | Positive samples (LR ≥ 10,000) | POI major contributor (> 60 %) | Unknown contributor detected | Total number of samples |
---|---|---|---|---|---|---|
Fingernail swabs | 0 | 0 | 100 % (12) | 92 % (11) | 0 | 12 |
12 | 4 | 91 % (10) | 45 % (5) | 18 % (2) | 11 | |
18 | 7 | 100 % (10) | 20 % (2) | 0 | 10 | |
24 | 9 | 91 % (10) | 0 | 9 % (1) | 11 | |
36 | 12 | 90 % (9) | 10 % (1) | 20 % (2) | 10 | |
Non-intimate contact | 50 % (6) | 0 | 33 % (4) | 12 | ||
Penile swabs | 0 | 100 % (12) | 92 % (11) | 8 % (1) | 12 | |
12 | 100 % (12) | 50 % (6) | 8 % (1) | 12 | ||
18 | 91 % (10) | 36 % (4) | 0 | 11 | ||
24 | 91 % (10) | 36 % (4) | 18 % (2) | 11 | ||
36 | 82 % (9) | 27 % (3) | 9 % (1) | 11 | ||
Non-intimate contact | 33 % (4) | 0 | 50 % (6) | 12 | ||
Boxershorts | 0 | 100 % (11) | 82 % (9) | 0 | 11 | |
Non-intimate contact | 67 % (8) | 0 | 25 % (3) | 12 |
Sample type | Sample category | Total number of samples with unknown contributor | Number of unknown alleles (lowest – highest observation) | % of unknown contributor in the DNA profile (lowest – highest observation) | Average % of unknown contributor to DNA profile |
---|---|---|---|---|---|
Fingernail swabs | Intimate contact | 4 | 1–12 | 7.5E-07 – 3.6 | 1.8 |
Non-intimate contact | 4 | 2–11 | 0.064 – 3.1 | 1.66 | |
Penile swabs | Intimate contact | 4 | 1–2 | 1.9E-09 – 0.55 | 0.26 |
Non-intimate contact | 3 | 1–6 | 0.052 – 1.9 | 1.18 | |
Boxershorts | Intimate contact | 0 | 0 | 0 | 0 |
Non-intimate contact | 3 | 1–18 | 0.13 – 13 | 7.68 |


3.2 RNA profiling
Sample type | Sampling time | Average no. of hand wash | mRNA Vaginal mucosa detected (≥ 50 % rule) | mRNA Vaginal mucosa sporadically detected | mRNA Vaginal mucosa NOT detected | Detection of other body fluids (≥ 50 % rule) | Total number of samples |
---|---|---|---|---|---|---|---|
Fingernail swabs | 0 | 0 | 100 % (12) | 0 | 0 | 25 % (3) | 12 |
12 | 4 | 45 % (5) | 45 % (5) | 9 % (1) | 0 | 11 | |
18 | 7 | 20 % (2) | 50 % (5) | 30 % (3) | 0 | 10 | |
24 | 9 | 9 % (1) | 55 % (6) | 36 % (4) | 9 % (1) | 11 | |
36 | 12 | 20 % (2) | 50 % (5) | 30 % (3) | 0 | 10 | |
Non-intimate contact | 0 | 42 % (5) | 58 % (7) | 8 % (1) | 12 | ||
Penile swabs | 0 | 100 % (12) | 0 | 0 | 67 % (8) | 12 | |
12 | 92 % (11) | 0 | 8 % (1) | 42 % (5) | 12 | ||
18 | 63 % (7) | 27 % (3) | 9 % (1) | 36 % (4) | 11 | ||
24 | 27 % (3) | 73 % (8) | 0 | 36 % (4) | 11 | ||
36 | 27 % (3) | 45 % (5) | 27 % (3) | 27 % (3) | 11 | ||
Non-intimate contact | 0 | 25 % (3) | 75 % (9) | 17 % (2) | 12 | ||
Boxershorts | 0 | 82 % (9) | 18 % (2) | 0 | 64 % (7) | 11 | |
Non-intimate contact | 8 % (1) | 75 % (9) | 17 % (2) | 17 % (2) | 12 |

Sample type | Sampling time | Vaginal mucosa | Blood | Semen | Saliva | Menstrual secretion | Nasal mucosa | Female marker | Male marker | Total number of samples |
---|---|---|---|---|---|---|---|---|---|---|
Fingernail swabs | 0 | 100 % (12) | 8 % (1) | 25 % (3) | 8 % (1) | 0 | 0 | 33 % (4) | 33 % (4) | 12 |
12 | 45 % (5) | 0 | 0 | 0 | 0 | 0 | 0 | 36 % (4) | 11 | |
18 | 20 % (2) | 0 | 0 | 0 | 0 | 0 | 0 | 20 % (2) | 10 | |
24 | 9 % (1) | 9 % (1) | 0 | 9 % (1) | 0 | 0 | 0 | 18 % (2) | 11 | |
36 | 20 % (2) | 0 | 0 | 0 | 0 | 0 | 0 | 40 % (4) | 10 | |
Non-intimate contact | 0 | 0 | 0 | 0 | 0 | 8 % (1) | 0 | 33 % (4) | 12 | |
Penile swabs | 0 | 100 % (12) | 25 % (3) | 33 % (4) | 25 % (3) | 0 | 0 | 67 % (8) | 75 % (9) | 12 |
12 | 92 % (11) | 0 | 42 % (5) | 0 | 0 | 0 | 8 % (1) | 67 % (8) | 12 | |
18 | 63 % (7) | 0 | 36 % (4) | 0 | 0 | 0 | 9 % (1) | 55 % (6) | 11 | |
24 | 27 % (3) | 0 | 36 % (4) | 0 | 0 | 0 | 9 % (1) | 64 % (7) | 11 | |
36 | 27 % (3) | 0 | 27 % (3) | 0 | 0 | 0 | 0 | 45 % (5) | 11 | |
Non-intimate contact | 0 | 0 | 8 % (1) | 0 | 0 | 8 % (1) | 0 | 33 % (4) | 12 | |
Boxer-shorts | 0 | 82 % (9) | 18 % (2) | 64 % (7) | 0 | 0 | 0 | 55 % (6) | 91 % (10) | 11 |
Non-intimate contact | 8 % (1) | 0 | 17 % (2) | 0 | 0 | 0 | 0 | 58 % (7) | 12 |
3.3 Association of RNA and DNA results

3.4 Characterisation of variables used in the Bayesian network
3.4.1 Direct transfer of POI DNA (


3.4.2 Indirect transfer of DNA from the POI (sD)

3.4.3 Detection of vaginal mucosa RNA () after direct contact
Penile swabs | Estimate | Std. Error | z value | Pr (>|z|) |
---|---|---|---|---|
(Intercept) | -8.67 | 4.06 | -2.135 | 0.03 |
Time | -0.07 | 0.05 | -1.42 | 0.16 |
RFU | 2.35 | 0.81 | 2.909 | 0.004 |
Fingernail swabs | Estimate | Std. Error | z value | Pr (>|z|) |
(Intercept) | -20.11 | 7.05 | -2.85 | 0.004 |
Time | 0.05 | 0.06 | 0.75 | 0.46 |
RFU | 4.73 | 1.56 | 3.02 | 0.003 |

3.4.4 Detection of vaginal mucosa RNA after indirect contact (sv) and background levels (bv)
3.4.5 Activity likelihood ratio (LRDV) analysis: Penile swabs
- a)DNA test and vaginal mucosa test is carried out where:
- a.Vaginal mucosa test is positive (D+V+)
- b.Vaginal mucosa test is negative (D+V-)
- a.
- b)The DNA test is carried out alone; no vaginal mucosa test is carried out (D+)
- c)Contribution of the vaginal mucosa test alone and:
- a.Vaginal mucosa test is positive (V+)
- b.Vaginal mucosa test is negative (V-)
- a.
A | D+V+ | log10LRD+V+ Quantiles | |||||||
---|---|---|---|---|---|---|---|---|---|
Time (h) | x | tD| (Time,RFU>x) | 0.025 | 0.05 | 0.25 | 0.5 | 0.75 | 0.95 | 0.975 |
0 | 2 | 0.99 | -0.16 | -0.139 | -0.1 | 0.0 | 0.1 | 0.3 | 0.3 |
0 | 3 | 0.99 | 0.6 | 0.6 | 0.9 | 1.2 | 1.6 | 3.8 | 5.7 |
0 | 4 | 0.98 | 3 | 3 | 3 | 4 | 5 | 10 | 12 |
0 | 5 | 0.91 | 6 | 6 | 7 | 9 | 11 | 15 | 15 |
0 | 6 | 0.65 | 9 | 9 | 11 | 13 | 15 | 17 | 17 |
35 | 2 | 0.85 | -0.2 | -0.2 | -0.1 | 0.0 | 0.1 | 0.2 | 0.3 |
35 | 3 | 0.85 | 0.5 | 0.6 | 0.9 | 1.1 | 1.6 | 3.8 | 5.6 |
35 | 4 | 0.45 | 2 | 2 | 3 | 4 | 5 | 9 | 12 |
35 | 5 | 0.05 | 4 | 5 | 6 | 7 | 9 | 13 | 14 |
35 | 6 | 0.001 | 5 | 6 | 8 | 10 | 12 | 14 | 14 |
B | D+V- | log10LRD+V- Quantiles | |||||||
Time (h) | x | tD|(Time,RFU>x) | 0.025 | 0.05 | 0.25 | 0.5 | 0.75 | 0.95 | 0.975 |
0 | 2 | 0.99 | 0.10 | 0.13 | 0.19 | 0.25 | 0.32 | 0.45 | 0.52 |
0 | 3 | 0.99 | 0.7 | 0.7 | 1.0 | 1.2 | 1.6 | 3.8 | 5.6 |
0 | 4 | 0.98 | 2 | 2 | 3 | 4 | 5 | 9 | 12 |
0 | 5 | 0.91 | 4 | 4 | 5 | 7 | 9 | 13 | 14 |
0 | 6 | 0.65 | 6 | 6 | 8 | 10 | 12 | 14 | 14 |
35 | 2 | 0.85 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.5 |
35 | 3 | 0.85 | 0.6 | 0.7 | 0.9 | 1.1 | 1.6 | 3.8 | 5.5 |
35 | 4 | 0.45 | 2 | 2 | 2 | 3 | 4 | 8 | 11 |
35 | 5 | 0.05 | 2 | 3 | 4 | 6 | 8 | 12 | 12 |
35 | 6 | 0.001 | 2 | 3 | 5 | 7 | 9 | 11 | 11 |
C | D+only | log10LRD+ Quantiles | |||||||
Time (h) | x | tD|(Time,RFU>x) | 0.025 | 0.05 | 0.25 | 0.5 | 0.75 | 0.95 | 0.975 |
0 | 2 | 0.99 | 0.11 | 0.13 | 0.19 | 0.25 | 0.32 | 0.45 | 0.52 |
0 | 3 | 0.99 | 0.7 | 0,.8 | 1.0 | 1.2 | 1.6 | 3.8 | 5.6 |
0 | 4 | 0.98 | 2 | 2 | 3 | 4 | 5 | 9 | 12 |
0 | 5 | 0.91 | 5 | 5 | 6 | 8 | 10 | 14 | 14 |
0 | 6 | 0.65 | 8 | 8 | 10 | 12 | 14 | 15 | 16 |
35 | 2 | 0.85 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.5 |
35 | 3 | 0.85 | 0.6 | 0.7 | 09 | 1.2 | 1.6 | 3.8 | 5.6 |
35 | 4 | 0.45 | 2 | 2 | 3 | 3 | 5 | 9 | 12 |
35 | 5 | 0.05 | 3 | 4 | 5 | 6 | 8 | 12 | 13 |
35 | 6 | 0.001 | 4 | 5 | 7 | 9 | 11 | 13 | 13 |
D | node V only | log10LRV Quantiles | |||||||
log10RFU | tV|(RFU) | 0.025 | 0.05 | 0.25 | 0.5 | 0.75 | 0.95 | 0.975 | |
Vaginal mucosa recovered (V+) | 2 | 0.002 | -0.3 | -0.3 | -0.3 | -0.3 | -0.2 | -0.1 | 0.0 |
3 | 0.03 | -0.3 | -0.2 | -0.2 | -0.1 | 0.1 | 0.3 | 0.4 | |
4 | 0.28 | 0.2 | 0.3 | 0.5 | 0.6 | 0.7 | 0.8 | 0.8 | |
5 | 0.84 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
6 | 0.99 | 1.0 | 1.0 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | |
Vaginal mucosa not recovered (V-) | 2 | 0.002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3 | 0.03 | -0.1 | -0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
4 | 0.28 | -0.3 | -0.3 | -0.2 | -0.1 | -0.1 | -0.1 | -0.1 | |
5 | 0.84 | -1.2 | -1.1 | -0.9 | -0.8 | -0.7 | -0.5 | -0.5 | |
6 | 0.99 | -2.8 | -2.7 | -2.1 | -1.8 | -1.5 | -1.2 | -1.1 |
3.4.5.1 Node V
3.4.6 Impact of vaginal mucosa RNA test BN node (V) on the evaluation of the combined DNA/RNA results
3.4.7 Comparison of activity LRs from penile and fingernail swabs, and boxershorts
Penile swabs | Fingernail swabs | Boxershorts | |||||
---|---|---|---|---|---|---|---|
Time (h) | x | tD| (Time,RFU>x) | log10LRD+ (median) | tD| (Time,RFU>x) | log10LRD+ (median) | tD| (RFU>x) | log10LRD+ (median) |
0 | 2 | 0.99 | 0.25 | 0.99 | 0.2 | 1 | 0.18 |
0 | 3 | 0.99 | 1.2 | 0.98 | 0.9 | 1 | 0.7 |
0 | 4 | 0.98 | 4 | 0.97 | 3 | 1 | 4 |
0 | 5 | 0.91 | 8 | 0.8 | 6 | 0.86 | 10 |
0 | 6 | 0.65 | 12 | 0.21 | 8 | 0.2 | 13 |
35 | 2 | 0.85 | 0.2 | 0.90 | 0.2 | ||
35 | 3 | 0.85 | 1.2 | 0.58 | 0.7 | ||
35 | 4 | 0.45 | 3 | 0.01 | 1 | ||
35 | 5 | 0.05 | 6 | 0.0003 | 2 | ||
35 | 6 | 0.001 | 9 | 0.001 | 6 |
3.5 Case example
3.5.1 The propositions
3.5.2 The forensic examination
- 1.DNA from the victim was detected on the penile swab (shaft), fingernail swabs and the boxershorts collected from the suspect. The respectively for each item of evidence.
- 2.Positive test for vaginal mucosa was detected by mRNA analysis on all items
- 3.No spermatozoa or seminal fluid was detected in the intimate samples collected from the victim.
- 4.No DNA of the suspect was detected in the samples from the victim (DNA STR analysis)
- 1.DNA from the victim was detected on the penile swab (shaft), fingernail swabs and the boxershorts collected from the suspect. The respectively, for each item of evidence.
- 2.Negative test for vaginal mucosa by mRNA analysis on all three items.
- 3.No spermatozoa or seminal fluid was detected from the intimate samples collected from the victim.
- 4.No DNA of the suspect was detected in the samples from the victim (DNA STR analysis)
- Gill P.
- Hicks T.
- Butler J.M.
- Connolly E.
- Gusmao L.
- Kokshoorn B.
- Morling N.
- van Oorschot R.A.H.
- Parson W.
- Prinz M.
- Schneider P.M.
- Sijen T.
- Taylor D.
![]() |
4. Discussion
4.1 Recovery of DNA
4.2 Recovery of vaginal mucosa
- Haas C.
- Hanson E.
- Anjos M.J.
- Ballantyne K.N.
- Banemann R.
- Bhoelai B.
- Borges E.
- Carvalho M.
- Courts C.
- De Cock G.
- Drobnic K.
- Dotsch M.
- Fleming R.
- Franchi C.
- Gomes I.
- Hadzic G.
- Harbison S.A.
- Harteveld J.
- Hjort B.
- Hollard C.
- Hoff-Olsen P.
- Huls C.
- Keyser C.
- Maronas O.
- McCallum N.
- Moore D.
- Morling N.
- Niederstatter H.
- Noel F.
- Parson W.
- Phillips C.
- Popielarz C.
- Roeder A.D.
- Salvaderi L.
- Sauer E.
- Schneider P.M.
- Shanthan G.
- Court D.S.
- Turanska M.
- van Oorschot R.A.
- Vennemann M.
- Vidaki A.
- Zatkalikova L.
- Ballantyne J.
4.3 Bayesian network
4.4 Source vs activity level evaluations for mRNA models
4.5 The appeal of R v Weller
R. v Weller, 2010. EWCA Crim 1085 (UK). <〈http://www.bailii.org/ew/cases/EWCA/Crim/2010/1085.html〉>).
R. v Weller, 2010. EWCA Crim 1085 (UK). <〈http://www.bailii.org/ew/cases/EWCA/Crim/2010/1085.html〉>).
4.6 Future research
CRediT authorship contribution statement
Declaration of Competing Interest
Acknowledgements
Appendix A. Supplementary material
Supplementary material
Supplementary material
Supplementary material
Supplementary material
Supplementary material
Supplementary material
Supplementary material
References
- Forensic body fluid identification: state of the art.Res. Rep. Forensic Med. Sci. 2016; 6: 11-23
- Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene.Forensic Sci. Int. 2009; 188: 1-17
- Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification.Forensic Sci. Int. 2003; 135: 85-96
- RNA/DNA co-analysis from blood stains--results of a second collaborative EDNAP exercise.Forensic Sci. Int. Genet. 2012; 6: 70-80
- RNA/DNA co-analysis from human saliva and semen stains--results of a third collaborative EDNAP exercise.Forensic Sci. Int. Genet. 2013; 7: 230-239
- RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: results of a fourth and fifth collaborative EDNAP exercise.Forensic Sci. Int. Genet. 2014; 8: 203-212
- A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results.Forensic Sci. Int. Genet. 2014; 10: 40-48
- A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces.Forensic Sci. Int. Genet. 2012; 6: 565-577
- Developmental validation of an enhanced mRNA-based multiplex system for body fluid and cell type identification.Sci. Justice. 2019; 59: 217-227
- mRNA profiling for vaginal fluid and menstrual blood identification.Forensic Sci. Int. Genet. 2013; 7: 272-278
- mRNA profiling using a minimum of five mRNA markers per body fluid and a novel scoring method for body fluid identification.Int. J. Leg. Med. 2013; 127: 707-721
- Highly specific mRNA biomarkers for the identification of vaginal secretions in sexual assault investigations.Sci. Justice. 2013; 53: 14-22
- Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis.Forensic Sci. Int. Genet. 2012; 6: 452-460
- How specific are the vaginal secretion mRNA-markers HBD1 and MUC4?.Forensic Sci. Int. Genet. Suppl. Ser. 2009; 2: 536-537
- Developmental validation of the ParaDNA® body fluid ID system – a rapid multiplex mRNA-profiling system for the forensic identification of body fluids.Forensic Sci. Int. Genet. 2018; 37: 151-161
- Advancing forensic RNA typing: on non-target secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling.Forensic Sci. Int. Genet. 2016; 20: 119-129
- Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios.Forensic Sci. Int. Genet. 2016; 21: 81-89
- A molecular exploration of human DNA/RNA co-extracted from the palmar surface of the hands and fingers.Forensic Sci. Int. Genet. 2016; 22: 44-53
- The prevalence of mixed DNA profiles in fingernail samples taken from individuals in the general population.Forensic Sci. Int. Genet. 2007; 1: 62-68
- The prevalence of mixed DNA profiles in fingernail samples taken from couples who co-habit using autosomal and Y-STRs.Forensic Sci. Int. Genet. 2009; 3: 57-62
- Prevalence and persistence of foreign DNA beneath fingernails.Forensic Sci. Int. Genet. 2012; 6: 236-243
- A retrospective study on the transfer, persistence and recovery of sperm and epithelial cells in samples collected in sexual assault casework, Forensic Science.Forensic Sci. Int. Genet. 2019; 43
- Is it possible to predict the origin of epithelial cells? – a comparison of secondary transfer of skin epithelial cells versus vaginal mucous membrane cells by direct contact.Sci. Justice. 2020; 60: 234-242
- Isolation and identification of female DNA on postcoital penile swabs.Am. J. Forensic Med. Pathol. 2000; 21: 97-100
- Assessing the presence of female DNA on post-coital penile swabs: relevance to the investigation of sexual assault.J. Forensic Leg. Med. 2012; 19: 386-389
- The detection of female DNA from the penis in sexual assault cases.J. Forensic Leg. Med. 2007; 14: 159-160
- DNA commission of the International society for forensic genetics: assessing the value of forensic biological evidence – guidelines highlighting the importance of propositions. Part II: evaluation of biological traces considering activity level propositions.Forensic Sci. Int. Genet. 2020; 44102186
- Evaluating the performance of five up-to-date DNA/RNA coextraction methods for forensic application.Forensic Sci. Int. 2021; 328
- A male and female RNA marker to infer sex in forensic analysis.Forensic Sci. Int. Genet. 2017; 26: 70-76
- Extended specificity studies of mRNA assays used to infer human organ tissues and body fluids.Electrophoresis. 2017; 38: 3155-3160
- Implementation of RNA profiling in forensic casework.Forensic Sci. Int. Genet. 2013; 7: 159-166
- EuroForMix: an open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts.Forensic Sci. Int. Genet. 2015; 21: 35-44
ENFSI, E.N.F.S.I. guideline for evaluative reporting in forensic science, 2016.
- RFU derived LRs for activity level assignments using Bayesian Networks.Forensic Sci. Int. Genet. 2022; 56102608
- A template for constructing Bayesian networks in forensic biology cases when considering activity level propositions.Forensic Sci. Int. Genet. 2018; 33: 136-146
- Bayesian networks for evaluating forensic DNA profiling evidence: a review and guide to literature.Forensic Sci. Int. Genet. 2012; 6: 147-157
- An LR framework incorporating sensitivity analysis to model multiple direct and secondary transfer events on skin surface.Forensic Sci. Int. Genet. 2021; 53 (102509-102509)
- On the identification of body fluids and tissues: a crucial link in the investigation and solution of crime.Genes. 2021; 12: 1728
- User-friendly Bayesian regression modeling: a tutorial with rstanarm and shinystan.Tutor. Quant. Methods Psychol. 2018; 14: 99-119
- Forensic Practioner’s Guide to the Interpretation of Complex DNA Profiles.Academic Press, 2020: 304-306
- Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers.Forensic Sci. Int. Genet. 2015; 18: 21-32
R. v Weller, 2010. EWCA Crim 1085 (UK). <〈http://www.bailii.org/ew/cases/EWCA/Crim/2010/1085.html〉>).
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy