Advertisement

Ion Torrent ™ Genexus ™ Integrated Sequencer and ForeNGS Analysis Software—An automatic NGS-STR workflow from DNA to profile for forensic science

      Highlights

      • Genexus automates library construction, templating, and sequencing in a single run.
      • ForeNGS Analysis Software is specifically developed in-house for forensic genomics.
      • Genexus–FNAS is a fully automatic DNA-to-Profile workflow for NGS-STR in forensics.
      • Genexus is sensitive enough to detect samples with ≥ 100 pg input DNA.
      • Genexus is suitable for various types of case samples, especially degraded samples.

      Abstract

      The Ion Torrent ™ Genexus ™ Sequencer (Genexus) is a highly integrated instrument that can automate library construction, templating, and sequencing in a single-instrument run. By programing the ForeNGS Analysis Software (FNAS), we bridged the gap between sequencing and genotyping without manual intervention. FNAS can automatically transfer sequencing output files from Genexus, analyze the repeat and flanking regions aligned to the GRCh38 assembly, name the alleles according to the ISFG guidelines, and generate user-friendly interactive profiles. Genexus and FNAS can accomplish the fully automatic DNA-to-Profile workflow in forensics. Based on our experiences, the optimal assay parameters on Genexus were validated as follows: 24 cycles of target amplification for library construction; 40 μL of library and 400 bp of template size for templating; 852 flows of dNTPs by order of Ion samba HID2 for sequencing; and 750,000 reads per sample at minimum for 16 samples multiplexed on a lane. By developmental validations of the Precision ID Globalfiler ™ NGS STR Panel v2, Genexus presented competitive performance at the optimal assay parameters qualified to detect commonly used forensic STR markers. It could produce repeatable and reproducible results, and human profiles could be easily separated from nonhuman profiles. Additionally, Genexus was sensitive enough to detect samples with 100 pg of input DNA, and it was suitable for various types of case samples, especially for low copy number samples and degraded samples. Moreover, minor contributors could be detected between the 4:1 and 1:4 mixtures with an analysis threshold of 50 × . The Genexus workflow is a robust and labor-effective solution enabling forensic scientists to obtain NGS-STR profiles within a single day and with only the need to prepare DNA extracts, then set up Genexus, and finally interpret profiles on FNAS.

      Graphical Abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fordyce S.L.
        • Avila-Arcos M.C.
        • Rockenbauer E.
        • Børsting C.
        • Frank-Hansen R.
        • Petersen F.T.
        • Willerslev E.
        • Hansen A.J.
        • Morling N.
        • Gilbert M.T.
        High-throughput sequencing of core STR loci for forensic genetic investigations using the roche genome Sequencer FLX platform.
        Biotechniques. 2011; 51: 127-133https://doi.org/10.2144/000113721
        • Holland M.M.
        • McQuillan M.R.
        • O'Hanlon K.A.
        Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy.
        Croat. Med. J. 2011; 52: 299-313https://doi.org/10.3325/cmj.2011.52.299
        • Bornman D.M.
        • Hester M.E.
        • Schuetter J.M.
        • Kasoji M.D.
        • Minard-Smith A.
        • Barden C.A.
        • Nelson S.C.
        • Godbold G.D.
        • Baker C.H.
        • Yang B.
        • Walther J.E.
        • Tornes I.E.
        • Yan P.S.
        • Rodriguez B.
        • Bundschuh R.
        • Dickens M.L.
        • Young B.A.
        • Faith S.A.
        Short-read, high-throughput sequencing technology for STR genotyping.
        Biotech Rapid Dispatches. 2012; 2012: 1-6
        • Templeton J.E.
        • Brotherton P.M.
        • Llamas B.
        • Soubrier J.
        • Haak W.
        • Cooper A.
        • Austin J.J.
        DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification.
        Investig. Genet. 2013; 4: 26https://doi.org/10.1186/2041-2223-4-26
        • Parson W.
        • Strobl C.
        • Huber G.
        • Zimmermann B.
        • Gomes S.M.
        • Souto L.
        • Fendt L.
        • Delport R.
        • Langit R.
        • Wootton S.
        • Lagacé R.
        • Irwin J.
        Evaluation of next generation mtGenome sequencing using the ion torrent personal genome machine (PGM).
        Forensic Sci. Int. Genet. 2013; 7: 543-549https://doi.org/10.1016/j.fsigen.2013.06.003
        • Guo F.
        • Zhou Y.
        • Liu F.
        • Yu J.
        • Song H.
        • Shen H.
        • Zhao B.
        • Jia F.
        • Hou G.
        • Jiang X.
        Evaluation of the early access STR Kit v1 on the ion torrent PGMTM platform.
        Forensic Sci. Int. Genet. 2016; 23: 111-120https://doi.org/10.1016/j.fsigen.2016.04.004
        • van der Heijden S.
        • de Oliveira S.J.
        • Kampmann M.
        • Børsting C.
        • Morling N.
        Comparison of manual and automated AmpliSeqTM workflows in the typing of a Somali population with the precision ID identity pane.
        Forensic Sci. Int. Genet. 2017; 31: 118-125https://doi.org/10.1016/j.fsigen.2017.09.009
        • Barrio P.A.
        • Martín P.
        • Alonso A.
        • Müller P.
        • Bodner M.
        • Berger B.
        • Parson W.
        • Budowle B.
        DNASEQEX Consortium, Massively parallel sequence data of 31 autosomal STR loci from 496 Spanish individuals revealed concordance with CE-STR technology and enhanced discrimination power.
        Forensic Sci. Int. Genet. 2019; 42: 49-55https://doi.org/10.1016/j.fsigen.2019.06.009
        • Guo F.
        • Yu J.
        • Zhang L.
        • Li J.
        Massively parallel sequencing of forensic STRs and SNPs using the Illumina ® ForenSeqTM DNA signature prep kit on the MiSeq FGxTM forensic genomics system.
        Forensic Sci. Int. Genet. 2017; 31: 135-148https://doi.org/10.1016/j.fsigen.2017.09.003
        • Guo F.
        • Zhou Y.
        • Song H.
        • Zhao J.
        • Shen H.
        • Zhao B.
        • Liu F.
        • Jiang X.
        Next generation sequencing of SNPs using the HID-Ion AmpliSeqTM identity panel on the Ion Torrent PGMTM platform.
        Forensic Sci. Int. Genet. 2016; 25: 73-84https://doi.org/10.1016/j.fsigen.2016.07.021
        • Ambers A.D.
        • Churchill J.D.
        • King J.L.
        • Stoljarova M.
        • Gill-King H.
        • Assidi M.
        • Abu-Elmagd M.
        • Buhmeida A.
        • Budowle B.
        More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel DNA sequencing.
        BMC Genom. 2016; 17: 750https://doi.org/10.1186/s12864-016-3087-2
        • Hussing C.
        • Huber C.
        • Bytyci R.
        • Mogensen H.S.
        • Morling N.
        • Børsting C.
        Sequencing of 231 forensic genetic markers using the MiSeq FGx™ forensic genomics system – an evaluation of the assay and software.
        Forensic Sci. Res. 2018; 3: 111-123https://doi.org/10.1080/20961790.2018.1446672
        • Faccinetto C.
        • Sabbatini D.
        • Serventi P.
        • Rigato M.
        • Salvoro C.
        • Casamassima G.
        • Margiotta G.
        • De Fanti S.
        • Sarno S.
        • Staiti N.
        • Luiselli D.
        • Marino A.
        • Vazza G.
        Internal validation and improvement of mitochondrial genome sequencing using the precision ID mtDNA whole genome panel.
        Int. J. Leg. Med. 2021; 135: 2295-2306https://doi.org/10.1007/s00414-021-02686-w
        • Pereira V.
        • Santangelo R.
        • Børsting C.
        • Tvedebrink T.
        • Almeida A.P.F.
        • Carvalho E.F.
        • Morling N.
        • Gusmão L.
        Evaluation of the precision of ancestry inferences in south american admixed populations.
        Front. Genet. 2020; 11: 966https://doi.org/10.3389/fgene.2020.00966
        • Cihlar J.C.
        • Amory C.
        • Lagacé R.
        • Roth C.
        • Parson W.
        • Budowle B.
        Developmental validation of a MPS workflow with a PCR-based short amplicon whole mitochondrial genome panel.
        Genes. 2020; 11: 1345https://doi.org/10.3390/genes11111345
        • Zhou Y.
        • Guo F.
        • Yu J.
        • Liu F.
        • Zhao J.
        • Shen H.
        • Zhao B.
        • Jia F.
        • Sun Z.
        • Song H.
        • Jiang X.
        Strategies for complete mitochondrial genome sequencing on Ion Torrent PGM™ platform in forensic sciences.
        Forensic Sci. Int. Genet. 2016; 22: 11-21https://doi.org/10.1016/j.fsigen.2016.01.004
        • Scheible M.
        • Loreille O.
        • Just R.
        • Irwin J.
        Short tandem repeat typing on the 454 platform: strategies and considerations for targeted sequencing of common forensic markers.
        Forensic Sci. Int. Genet. 2014; 12: 107-119https://doi.org/10.1016/j.fsigen.2014.04.010
        • Kim E.H.
        • Lee H.Y.
        • Yang I.S.
        • Jung S.
        • Yang W.I.
        • Shin K.
        Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons.
        Forensic Sci. Int. Genet. 2016; 22: 1-7https://doi.org/10.1016/j.fsigen.2016.01.001
        • Xin Y.
        • Jia R.
        • Zhang S.
        • Guo F.
        Mitochondrial genome sequencing with short overlapping amplicons on MiSeq FGx system.
        Forensic Sci. Res. 2022; 7: 142-153https://doi.org/10.1080/20961790.2021.1963514
        • Zhang S.
        • Bian Y.
        • Chen A.
        • Zheng H.
        • Gao Y.
        • Hou Y.
        • Li C.
        Massively parallel sequencing of 231 autosomal SNPs with a custom panel: a SNP typing assay developed for human identification with Ion Torrent PGM.
        Forensic Sci. Res. 2017; 2: 26-33https://doi.org/10.1080/20961790.2017.1281011
        • Truelsen D.
        • Tvedebrink T.
        • Mogensen H.S.
        • Farzad M.S.
        • Shan M.A.
        • Morling N.
        • Pereira V.
        • Børsting C.
        Assessment of the effectiveness of the EUROFORGEN NAME and precision ID ancestry panel markers for ancestry investigations.
        Sci. Rep. 2021; 11: 18595https://doi.org/10.1038/s41598-021-97654-0
        • Huszar T.I.
        • Gettings K.B.
        • Vallone P.M.
        An introductory overview of open-source and commercial software options for the analysis of forensic sequencing data.
        Genes. 2021; 12: 1739https://doi.org/10.3390/genes12111739
        • Warshauer D.H.
        • Lin D.
        • Hari K.
        • Jain R.
        • Davis C.
        • Larue B.
        • King J.L.
        • Budowle B.
        STRait razor: a length-based forensic STR allele-calling tool for use with second generation sequencing data.
        Forensic Sci. Int. Genet. 2013; : 409-417https://doi.org/10.1016/j.fsigen.2013.04.005
        • Neste C.V.
        • Vandewoestyne M.
        • Criekinge W.V.
        • Deforce D.
        • Nieuwerburgh F.V.
        My-forensic-loci-queries (MyFLq) framework for analysis of forensic STR data generated by massive parallel sequencing.
        Forensic Sci. Int. Genet. 2014; 9: 1-8https://doi.org/10.1016/j.fsigen.2013.10.012
        • Ganschow S.
        • Silvery J.
        • Kalinowski J.
        • Tiemann C.
        toaSTR: a web application for forensic STR genotyping by massively parallel sequencing.
        Forensic Sci. Int. Genet. 2018; 37: 21-28https://doi.org/10.1016/j.fsigen.2018.07.006
        • Hollard C.
        • Ausset L.
        • Chantrel Y.
        • Jullien S.
        • Clot M.
        • Faivre M.
        • Suzanne É.
        • Pène L.
        • Laurent F.X.
        Automation and developmental validation of the ForenSeqTM DNA signature preparation kit for high-throughput analysis in forensic laboratories.
        Forensic Sci. Int. Genet. 2019; 40: 37-45https://doi.org/10.1016/j.fsigen.2019.01.010
      1. Thermo Fisher Scientific, Precision ID GlobalFilerTM NGS STR Panel v2 with the HID Ion S5TM/HID Ion GeneStudioTM S5 System, P/N MAN00 16129, Rev.B.0, Thermo Fisher Scientific, Waltham, 2018. Available at: 〈https://assets.thermofisher.cn/TFS-Assets/LSG/manuals/MAN0016129_PrecisionIDSTRIonS5_UG.pdf〉.

        • Rachiglio A.M.
        • de Sabato L.
        • Roma C.
        • Cennamo M.
        • Fiorenza M.
        • Terracciano D.
        • Pasquale R.
        • Bergantino F.
        • Cavalcanti E.
        • Botti G.
        • Vaccari G.
        • Portella G.
        • Normanno N.
        SARS-CoV-2 complete genome sequencing from the Italian Campania region using a highly automated next generation sequencing system.
        J. Transl. Med. 2021; 19: 246https://doi.org/10.1186/s12967-021-02912-4
        • Hofman P.
        • Bordone O.
        • Chamorey E.
        • Benzaquen J.
        • Schiappa R.
        • Lespinet-Fabre V.
        • Lanteri E.
        • Brest P.
        • Mograbi B.
        • Maniel C.
        • Tanga V.
        • Allegra M.
        • Salah M.
        • Fayada J.
        • Boutros J.
        • Leroy S.
        • Heeke S.
        • Hofman V.
        • Marquette C.
        • Ilié M.
        Setting-up a rapid SARS-CoV-2 genome assessment by next-generation sequencing in an academic hospital center (LPCE, Louis Pasteur Hospital, Nice, France).
        Front. Med. 2022; 8730577https://doi.org/10.3389/fmed.2021.730577
      2. Thermo Fisher Scientific, GenexusTM Integrated Sequencer, P/N MAN00 17910, Rev.D.0, Thermo Fisher Scientific, Waltham, 2020. Available at: 〈https://assets.thermofisher.cn/TFS-Assets/LSG/manuals/MAN0017910_GenexusIntegratedSequencer_UG.pdf〉.

      3. Thermo Fisher Scientific, AutoMate ExpressTM Instrument, P/N 444 1982, Rev.G. Thermo Fisher Scientific, Waltham, 2019. Available at: 〈https://assets.thermofisher.cn/TFS-Assets/LSG/manuals/4441982_AutoMateExp_UG.pdf〉.

      4. Thermo Fisher Scientific, Quantifiler™ HP and Trio DNA Quantification Kits, P/N 4485354, Rev.H. Thermo Fisher Scientific, Waltham, 2018. Available at: 〈https://assets.thermofisher.cn/TFS-Assets/LSG/manuals/4485354.pdf〉.

      5. Thermo Fisher Scientific, Qubit® dsDNA HS Assay Kits, P/N MAN0002326, Rev.B.0, Thermo Fisher Scientific, Waltham, 2015. Available at: 〈https://assets.thermofisher.cn/TFS-Assets/LSG/manuals/Qubit_dsDNA_HS_Assay_UG.pdf〉.

        • King J.L.
        • Woerner A.E.
        • Mandape S.N.
        • Kapema K.B.
        • Moura-Neto R.S.
        • Silva R.
        • Budowle B.
        STRait razor online: an enhanced user interface to facilitate interpretation of MPS data.
        Forensic Sci. Int. Genet. 2021; 52102463https://doi.org/10.1016/j.fsigen.2021.102463
        • Jønck C.G.
        • Qian X.
        • Simayijiang H.
        • Børsting C.
        STRinNGS v2.0: improved tool for analysis and reporting of STR sequencing data.
        Forensic Sci. Int. Genet. 2020; 48102331https://doi.org/10.1016/j.fsigen.2020.102331
        • Parson W.
        • Ballard D.
        • Budowle B.
        • Butler J.M.
        • Gettings K.B.
        • Gill P.
        • Gusmão L.
        • Hares D.R.
        • Irwin J.A.
        • King J.L.
        • Knijff P.
        • Morling N.
        • Prinz M.
        • Schneider P.M.
        • Neste C.V.
        • Willuweit S.
        • Phillips C.
        Massively parallel sequencing of forensic STRs: considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements.
        Forensic Sci. Int. Genet. 2016; 22: 54-63https://doi.org/10.1016/j.fsigen.2016.01.009
        • Phillips C.
        • Gettings K.B.
        • King J.L.
        • Ballard D.
        • Bodner M.
        • Borsuk L.
        • Parson W.
        “The devil’s in the detail”: Release of an expanded, enhanced and dynamically revised forensic STR Sequence Guide.
        Forensic Sci. Int. Genet. 2018; 34: 162-169https://doi.org/10.1016/j.fsigen.2018.02.017
      6. Promega, PowerPlex® 21 System for Use on the Applied Biosystems® Genetic Analyzers, P/N TMD034, Rev. 7/21, Promega, Madison, 2021. Available at: 〈https://www.promega.com.cn/-/media/files/resources/protocols/technical-manuals/101/powerplex-21-system-protocol.pdf?rev=6d87d1ffc3bf4db8ac3a340395185416&la=en〉.

      7. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, 2015. Available from: 〈https://www.r-project.org〉.

        • Tao R.
        • Qi W.
        • Chen C.
        • Zhang J.
        • Yang Z.
        • Song W.
        • Zhang S.
        • Li C.
        Pilot study for forensic evaluations of the Precision ID GlobalFiler™ NGS STR Panel v2 with the Ion S5™ system.
        Forensic Sci. Int. Genet. 2019; 43102147https://doi.org/10.1016/j.fsigen.2019.102147
      8. Scientific Working Group on DNA Analysis Methods (SWGDAM), Validation Guidelines for DNA Analysis Methods, SWGDAM, Washington, 2016. Available at: 〈https://www.swgdam.org/_files/ugd/4344b0_813b241e8944497e99b9c45b163b76bd.pdf〉.

        • Ludeman M.J.
        • Zhong C.
        • Mulero J.J.
        • Lagacé R.E.
        • Hennessy L.K.
        • Short M.L.
        • Wang D.Y.
        Developmental validation of GlobalFilerTM PCR amplification kit: a 6-dye multiplex assay designed for amplification of casework samples.
        Int. J. Leg. Med. 2018; 132: 1555-1573https://doi.org/10.1007/s00414-018-1817-5
        • Masters J.R.
        • Thomson J.A.
        • Daly-Burns B.
        • Reid Y.A.
        • Dirks W.G.
        • Packer P.
        • Toji L.H.
        • Ohno T.
        • Tanabe H.
        • Arlett C.F.
        • Kelland L.R.
        • Harrison M.
        • Virmani A.
        • Ward T.H.
        • Ayres K.L.
        • Debenham P.G.
        Short tandem repeat profiling provides an international reference standard for human cell lines.
        Proc. Natl. Acad. Sci. USA. 2001; 98: 8012-8017https://doi.org/10.1073/pnas.121616198
        • Butler J.M.
        Advanced Topics in Forensic DNA Typing: Methodology.
        Academic Press, Boston2011
      9. Thermo Fisher Scientific, Performance of the Precision ID GlobalFiler™ NGS STR Panel v2: Artifacts, Thresholds and Chip Loading, Thermo Fisher Scientific, Waltham, 2021. Available at: 〈https://assets.thermofisher.cn/TFS-Assets/GSD/Technical-Notes/precision_id_str_snp_combo_2019_technical_note.pdf〉.