Advertisement

Improving discrimination capacity through rapidly mutating Y-STRs in structured populations from the African continent

      Highlights

      • Discrimination power of RM Y-STRs in endogamous African populations was investigated.
      • Low discrimination power previously observed is only partially due to close kinship.
      • Discrimination capacity increased from 0.898 (Yfiler Plus) to 0.958 using RM Y-STRs.
      • Additional RM Y-STRs are required to fully differentiate male relatives.

      Abstract

      Y chromosome short tandem repeats (Y-STRs) typing is becoming increasingly popular in forensic casework mainly because it allows the recovery of male-specific genetic information from severely unbalanced male-female DNA mixtures. The relatively low discrimination power of conventional Y-STR multiplexes, due to linkage disequilibrium among polymorphic loci, has been partially overcome by the introduction of rapidly mutating Y microsatellites (RM Y-STRs) with mutation rates exceeding 1 × 10-2/generation. In previous works, we reported an unexpectedly high level of haplotype sharing among African males using the Yfiler Plus PCR Amplification kit, the most powerful commercially available system, including 19 conventional Y-STRs and 6 RM Y-STRs. In particular, analyzing 1370 males from northern, eastern and central Africa, 240 subjects were found to share 100 Y-STR haplotypes. We attributed the relatively low discrimination capacity to several factors including patrilocality, endogamy, sampling bias and degree of urbanization. In the present study, using a blind search analysis based on 16 autosomal STRs, we first investigated the kinship between pairs of African males previously found to share the Yfiler Plus haplotype; then, we evaluated the improvement in identification capacity allowed by a PCR multiplex assay (RM-YPlex) based on 13 “first generation” RM Y-STR, seven of which are not included in the Yfiler Plus multiplex. Among 228 pairs of males sharing a Yfiler Plus haplotype, we detected 134 related (cousins or closer) and 94 unrelated (or distantly related) pairs of subjects. By using the RM-YPlex, we observed a full genotype concordance for the six loci shared with the Yfiler Plus, while the additional seven RM Y-STRs allowed the discrimination among 58.2 % related pairs and 84.0 % unrelated pairs. The discrimination capacity increased from 0.898 to 0.958, while the proportion of males sharing a haplotype decreased from 17.5 % to 8.0 %. These findings further highlight the capability of RM Y-STRs to distinguish males even in close kinship scenarios and in sub-structured populations as African ones, but at the same time call for the discovery and testing of additional RM Y-STRs to fully differentiate male relatives.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adnan A.
        • Ralf A.
        • Rakha A.
        • Kousouri N.
        • Kayser M.
        Improving empirical evidence on differentiating closely related men with RM Y-STRs: a comprehensive pedigree study from Pakistan.
        Forensic Sci. Int. Genet. 2016; 25: 45-51https://doi.org/10.1016/j.fsigen.2016.07.005
        • Alghafri R.
        • Goodwin W.
        • Ralf A.
        • Kayser M.
        • Hadi S.
        A novel multiplex assay for simultaneously analysing 13 rapidly mutating Y-STRs.
        Forensic Sci. Int. Genet. 2015; 17: 91-98https://doi.org/10.1016/j.fsigen.2015.04.004
        • Babicki S.
        • Arndt D.
        • Marcu A.
        • Liang Y.
        • Grant J.R.
        • Maciejewski A.
        • Wishart D.S.
        Heatmapper: web-enabled heat mapping for all.
        Nucleic Acids Res. 2016; 44: W147-W153https://doi.org/10.1093/nar/gkw419
        • Ballantyne K.N.
        • Ralf A.
        • Aboukhalid R.
        • Achakzai N.M.
        • Anjos M.J.
        • Ayub Q.
        • Balažic J.
        • Ballantyne J.
        • Ballard D.J.
        • Berger B.
        • Bobillo C.
        • Bouabdellah M.
        • Burri H.
        • Capal T.
        • Caratti S.
        • Cárdenas J.
        • Cartault F.
        • Carvalho E.F.
        • Carvalho M.
        • Cheng B.
        • Coble M.D.
        • Comas D.
        • Corach D.
        • D’Amato M.E.
        • Davison S.
        • de Knijff P.
        • De Ungria M.C.A.
        • Decorte R.
        • Dobosz T.
        • Dupuy B.M.
        • Elmrghni S.
        • Gliwiński M.
        • Gomes S.C.
        • Grol L.
        • Haas C.
        • Hanson E.
        • Henke J.
        • Henke L.
        • Herrera-Rodríguez F.
        • Hill C.R.
        • Holmlund G.
        • Honda K.
        • Immel U.-D.
        • Inokuchi S.
        • Jobling M.A.
        • Kaddura M.
        • Kim J.S.
        • Kim S.H.
        • Kim W.
        • King T.E.
        • Klausriegler E.
        • Kling D.
        • Kovačević L.
        • Kovatsi L.
        • Krajewski P.
        • Kravchenko S.
        • Larmuseau M.H.D.
        • Lee E.Y.
        • Lessig R.
        • Livshits L.A.
        • Marjanović D.
        • Minarik M.
        • Mizuno N.
        • Moreira H.
        • Morling N.
        • Mukherjee M.
        • Munier P.
        • Nagaraju J.
        • Neuhuber F.
        • Nie S.
        • Nilasitsataporn P.
        • Nishi T.
        • Oh H.H.
        • Olofsson J.
        • Onofri V.
        • Palo J.U.
        • Pamjav H.
        • Parson W.
        • Petlach M.
        • Phillips C.
        • Ploski R.
        • Prasad S.P.R.
        • Primorac D.
        • Purnomo G.A.
        • Purps J.
        • Rangel-Villalobos H.
        • Rębała K.
        • Rerkamnuaychoke B.
        • Gonzalez D.R.
        • Robino C.
        • Roewer L.
        • Rosa A.
        • Sajantila A.
        • Sala A.
        • Salvador J.M.
        • Sanz P.
        • Schmitt C.
        • Sharma A.K.
        • Silva D.A.
        • Shin K.-J.
        • Sijen T.
        • Sirker M.
        • Siváková D.
        • Skaro V.
        • Solano-Matamoros C.
        • Souto L.
        • Stenzl V.
        • Sudoyo H.
        • Syndercombe-Court D.
        • Tagliabracci A.
        • Taylor D.
        • Tillmar A.
        • Tsybovsky I.S.
        • Tyler-Smith C.
        • van der Gaag K.J.
        • Vanek D.
        • Völgyi A.
        • Ward D.
        • Willemse P.
        • Yap E.P.H.
        • Yong R.Y.Y.
        • Pajnič I.Z.
        • Kayser M.
        Toward male individualization with rapidly mutating y-chromosomal short tandem repeats.
        Hum. Mutat. 2014; 35: 1021-1032https://doi.org/10.1002/humu.22599
        • Ballantyne K.N.
        • Goedbloed M.
        • Fang R.
        • Schaap O.
        • Lao O.
        • Wollstein A.
        • Choi Y.
        • van Duijn K.
        • Vermeulen M.
        • Brauer S.
        • Decorte R.
        • Poetsch M.
        • von Wurmb-Schwark N.
        • de Knijff P.
        • Labuda D.
        • Vézina H.
        • Knoblauch H.
        • Lessig R.
        • Roewer L.
        • Ploski R.
        • Dobosz T.
        • Henke L.
        • Henke J.
        • Furtado M.R.
        • Kayser M.
        Mutability of Y-chromosomal microsatellites: rates, characteristics, molecular bases, and forensic implications.
        Am. J. Hum. Genet. 2010; 87: 341-353https://doi.org/10.1016/j.ajhg.2010.08.006
        • Ballantyne K.N.
        • Keerl V.
        • Wollstein A.
        • Choi Y.
        • Zuniga S.B.
        • Ralf A.
        • Vermeulen M.
        • de Knijff P.
        • Kayser M.
        A new future of forensic Y-chromosome analysis: Rapidly mutating Y-STRs for differentiating male relatives and paternal lineages.
        Forensic Sci. Int. Genet. 2012; 6: 208-218https://doi.org/10.1016/j.fsigen.2011.04.017
        • Boattini A.
        • Sarno S.
        • Mazzarisi A.M.
        • Viroli C.
        • De Fanti S.
        • Bini C.
        • Larmuseau M.H.D.
        • Pelotti S.
        • Luiselli D.
        Estimating Y-Str mutation rates and Tmrca through deep-rooting italian pedigrees.
        Sci. Rep. 2019; 9: 9032https://doi.org/10.1038/s41598-019-45398-3
        • Bredemeyer S.
        • Roewer L.
        • Willuweit S.
        Next generation sequencing of Y-STRs in father-son pairs and comparison with traditional capillary electrophoresis.
        Forensic Sci. Res. 2021; https://doi.org/10.1080/20961790.2021.1898078
        • Claerhout S.
        • Vandenbosch M.
        • Nivelle K.
        • Gruyters L.
        • Peeters A.
        • Larmuseau M.H.D.
        • Decorte R.
        Determining Y-STR mutation rates in deep-routing genealogies: identification of haplogroup differences.
        Forensic Sci. Int. Genet. 2018; 34: 1-10https://doi.org/10.1016/j.fsigen.2018.01.005
        • D’Atanasio E.
        • Iacovacci G.
        • Pistillo R.
        • Bonito M.
        • Dugoujon J.-M.
        • Moral P.
        • El-Chennawi F.
        • Melhaoui M.
        • Baali A.
        • Cherkaoui M.
        • Sellitto D.
        • Trombetta B.
        • Berti A.
        • Cruciani F.
        Rapidly mutating Y-STRs in rapidly expanding populations: discrimination power of the Yfiler Plus multiplex in northern Africa.
        Forensic Sci. Int. Genet. 2019; 38: 185-194https://doi.org/10.1016/j.fsigen.2018.11.002
        • Della Rocca C.
        • Alladio E.
        • Barni F.
        • Cannone F.
        • D’Atanasio E.
        • Trombetta B.
        • Berti A.
        • Cruciani F.
        Low discrimination power of the Yfilertm plus PCR amplification kit in African Populations. Do we need more RM Y-STRs?.
        Forensic Sci. Int. Genet. 2019; https://doi.org/10.1016/j.fsigss.2019.10.133
        • Della Rocca C.
        • Cannone F.
        • D’Atanasio E.
        • Bonito M.
        • Anagnostou P.
        • Russo G.
        • Barni F.
        • Alladio E.
        • Destro-Bisol G.
        • Trombetta B.
        • Berti A.
        • Cruciani F.
        Ethnic fragmentation and degree of urbanization strongly affect the discrimination power of Y-STR haplotypes in central Sahel.
        Forensic Sci. Int. Genet. 2020; 49102374https://doi.org/10.1016/j.fsigen.2020.102374
        • Gill P.
        • Brenner C.
        • Brinkmann B.
        • Budowle B.
        • Carracedo A.
        • Jobling M.A.
        • de Knijff P.
        • Kayser M.
        • Krawczak M.
        • Mayr W.R.
        • Morling N.
        • Olaisen B.
        • Pascali V.
        • Prinz M.
        • Roewer L.
        • Schneider P.M.
        • Sajantila A.
        • Tyler-Smith C.
        DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y-chromosome STRs.
        Forensic Sci. Int. 2001; 124: 5-10https://doi.org/10.1016/S0379-0738(01)00498-4
        • Gusmão L.
        • Butler J.M.
        • Carracedo A.
        • Gill P.
        • Kayser M.
        • Mayr W.R.
        • Morling N.
        • Prinz M.
        • Roewer L.
        • Tyler-Smith C.
        • Schneider P.M.
        DNA Commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis.
        Forensic Sci. Int. 2006; 157: 187-197https://doi.org/10.1016/j.forsciint.2005.04.002
        • Haddish K.
        • Chierto E.
        • Di Vella G.
        • Lacerenza D.
        • Raddi S.
        • Aneli S.
        • Bogale A.L.
        • Kidane E.
        • Yizengaw A.
        • Getaneh Y.
        • Tewelemedhin G.
        • Kumar H.R.S.
        • Robino C.
        A reference database of forensic autosomal and gonosomal STR markers in the Tigray population of Ethiopia.
        Forensic Sci. Int.: Genet. 2022; 56102618https://doi.org/10.1016/j.fsigen.2021.102618
      1. Hammer Ø. Harper D. Paleontological Data Analysis. Blackwell Publishing, Malden, MA, USA2005https://doi.org/10.1002/9780470750711
        • Hill C.R.
        • Duewer D.L.
        • Kline M.C.
        • Coble M.D.
        • Butler J.M.
        U.S. population data for 29 autosomal STR loci.
        Forensic Sci. Int. Genet. 2013; 7: e82-e83https://doi.org/10.1016/j.fsigen.2012.12.004
        • Iacovacci G.
        • D’Atanasio E.
        • Marini O.
        • Coppa A.
        • Sellitto D.
        • Trombetta B.
        • Berti A.
        • Cruciani F.
        Forensic data and microvariant sequence characterization of 27 Y-STR loci analyzed in four Eastern African countries.
        Forensic Sci. Int. Genet. 2017; 27: 123-131https://doi.org/10.1016/j.fsigen.2016.12.015
        • Kayser M.
        Forensic use of Y-chromosome DNA: a general overview.
        Hum. Genet. 2017; 136: 621-635https://doi.org/10.1007/s00439-017-1776-9
        • Kling D.
        • Tillmar A.O.
        • Egeland T.
        Familias 3 – extensions and new functionality.
        Forensic Sci. Int. Genet. 2014; 13: 121-127https://doi.org/10.1016/j.fsigen.2014.07.004
        • Marquis R.
        • Biedermann A.
        • Cadola L.
        • Champod C.
        • Gueissaz L.
        • Massonnet G.
        • Mazzella W.D.
        • Taroni F.
        • Hicks T.
        Discussion on how to implement a verbal scale in a forensic laboratory: benefits, pitfalls and suggestions to avoid misunderstandings.
        Sci. Justice. 2016; 56: 364-370https://doi.org/10.1016/j.scijus.2016.05.009
        • Neuhuber F.
        • Dunkelmann B.
        • Grießner I.
        • Helm K.
        • Kayser M.
        • Ralf A.
        Improving the differentiation of closely related males by RMplex analysis of 30 Y-STRs with high mutation rates.
        Forensic Sci. Int. Genet. 2022; 102682https://doi.org/10.1016/j.fsigen.2022.102682
        • Rakha A.
        • Oh Y.N.
        • Lee H.Y.
        • Hussain S.
        • Waryah A.M.
        • Adnan A.
        • Shin K.J.
        Discriminating power of rapidly mutating Y-STRs in deep rooted endogamous pedigrees from Sindhi population of Pakistan.
        Leg. Med. 2018; 34: 17-20https://doi.org/10.1016/j.legalmed.2018.08.001
        • Ralf A.
        • Lubach D.
        • Kousouri N.
        • Winkler C.
        • Schulz I.
        • Roewer L.
        • Purps J.
        • Lessig R.
        • Krajewski P.
        • Ploski R.
        • Dobosz T.
        • Henke L.
        • Henke J.
        • Larmuseau M.H.D.
        • Kayser M.
        Identification and characterization of novel rapidly mutating Y-chromosomal short tandem repeat markers.
        Hum. Mutat. 2020; 41: 1680-1696https://doi.org/10.1002/humu.24068
        • Ralf A.
        • Zandstra D.
        • Weiler N.
        • van Ijcken W.F.J.
        • Sijen T.
        • Kayser M.
        RMplex: an efficient method for analyzing 30 Y-STRs with high mutation rates.
        Forensic Sci. Int. Genet. 2021; 55102595https://doi.org/10.1016/j.fsigen.2021.102595
        • Robino C.
        • Ralf A.
        • Pasino S.
        • De Marchi M.R.
        • Ballantyne K.N.
        • Barbaro A.
        • Bini C.
        • Carnevali E.
        • Casarino L.
        • Di Gaetano C.
        • Fabbri M.
        • Ferri G.
        • Giardina E.
        • Gonzalez A.
        • Matullo G.
        • Nutini A.L.
        • Onofri V.
        • Piccinini A.
        • Piglionica M.
        • Ponzano E.
        • Previderè C.
        • Resta N.
        • Scarnicci F.
        • Seidita G.
        • Sorçaburu-Cigliero S.
        • Turrina S.
        • Verzeletti A.
        • Kayser M.
        Development of an Italian RM Y-STR haplotype database: results of the 2013 GEFI collaborative exercise.
        Forensic Sci. Int. Genet. 2015; 15: 56-63https://doi.org/10.1016/j.fsigen.2014.10.008
        • Roewer L.
        • Andersen M.M.
        • Ballantyne J.
        • Butler J.M.
        • Caliebe A.
        • Corach D.
        • D’Amato M.E.
        • Gusmão L.
        • Hou Y.
        • de Knijff P.
        • Parson W.
        • Prinz M.
        • Schneider P.M.
        • Taylor D.
        • Vennemann M.
        • Willuweit S.
        DNA commission of the International Society of Forensic Genetics (ISFG): recommendations on the interpretation of Y-STR results in forensic analysis.
        Forensic Sci. Int. Genet. 2020; 48102308https://doi.org/10.1016/j.fsigen.2020.102308
        • Tamura T.
        • Osawa M.
        • Ochiai E.
        • Suzuki T.
        • Nakamura T.
        Evaluation of advanced multiplex short tandem repeat systems in pairwise kinship analysis.
        Leg. Med. 2015; 17: 320-325https://doi.org/10.1016/j.legalmed.2015.03.005
        • Yuan L.
        • Chen W.
        • Zhao D.
        • Li Y.
        • Hao S.
        • Liu Y.
        • Lu D.
        Mutation analysis of 13 RM Y-STR loci in Han population from Beijing of China.
        Int. J. Leg. Med. 2019; 133: 59-63https://doi.org/10.1007/s00414-018-1949-7