Advertisement

Paternal genetic structure of the Qiang ethnic group in China revealed by high-resolution Y-chromosome STRs and SNPs

Published:September 13, 2022DOI:https://doi.org/10.1016/j.fsigen.2022.102774

      Highlights

      • This is the first high-resolution Y-SNP study of Qiang ethnic group.
      • The highest genetic diversity was observed in Qiang ethnic group compared to former studied Chinese population.
      • Haplogroup D-M174 individuals of Qiang, Tibetan and Japanese populations distributed in three totally different subclades.
      • The Qiang had less proportion of haplogroup D compared to Yi and Tibetan ethnic groups.
      • Haplogroup Q-M242 specific microvariants were found in DYS518.

      Abstract

      The Qiang population mainly lived in Beichuan Qiang Autonomous County of Sichuan Province. It is one of the nomads in China, distributed along the Minjiang River. The Qiang population was assumed to have great affinity with the Han, the largest ethnic group in China, when it refers to the genetic origin. Whereas, it is deeply understudied, especially from the Y chromosome. Here in this study, we used validated high-resolution Y-chromosome single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs) panels to study the Qiang ethnic group to unravel their paternal genetic, forensic and phylogenetic characteristics. A total of 422 male samples of the Qiang ethnic group were genotyped by 233 Y-SNPs and 29 Y-STRs. Haplogroup O-M175 (N = 312) was the most predominant haplogroup in the Qiang ethnic group, followed by D-M174 (N = 32) and C-M130 (N = 32), N-M231 (N = 27), and Q-M242 (N = 15). After further subdivision, O2a-M324 (N = 213) accounted for the majority of haplogroup O. Haplogroup C2b-Z1338 (N = 29), D1a-CTS11577 (N = 30). O2a2b1a1a1-F42 (N = 48), O2a1b1a1a1a-F11 (N = 35), and O2a2b1a1-M117 (N = 21) represented other large terminal haplogroups. The results unveiled that Qiang ethnic group was a population with a high percentage of haplogroup O2a2b1a1a1-F42 (48/422) and O2a1b1a1a1a-F11 (35/422), and O2a2b1a1-M117 (21/422), which has never been reported. Its haplogroup distribution pattern was different from any of the Han populations, implying that the Qiang ethnic group had its unique genetic pattern. Mismatch analysis indicated that the biggest mismatch number in haplogroup O2a2b1a1a1-F42 was 21, while that of haplogroup O2a1b1a1a1a-F11 was 20. The haplotype diversity of the Qiang ethnic group equaled 0.999788, with 392 haplotypes observed, of which 367 haplotypes were unique. The haplogroup diversity of the Qiang ethnic group reached 0.9767, and 53 terminal haplogroups were observed (The haplogroup diversity of the Qiang ethnic group was the highest among Qiang and all Han subgroups, indicating the larger genetic diversity of the Qiang ethnic group.). Haplogroup O2a2b1a1a1-F42 was the most predominant haplogroup, including 11.37 % of the Qiang individuals. Median-joining trees showed gene flow between the Qiang and Han individuals. Our results indicated that 1) the highest genetic diversity was observed in the Qiang ethnic group compared to any of the former studied Chinese population, suggesting that the Qiang might be an older paternal branch; 2) the haplogroup D-M174 individuals of Qiang, Tibetans and Japanese distributed in three different subclades, which was unable to identify through low-resolution Y-SNP panel; and 3) the Qiang had lower proportion of haplogroup D compared to Yi and Tibetan ethnic groups, showing that the Qiang had less genetic communication with them than with Han Chinese.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wu Q.
        • Ying J.
        • Xue C.
        • Lv Q.
        • Song F.
        • Wang J.
        • Song X.
        • Chen J.
        Genetic analysis of 29 Y-STR loci in Qiang population from Beichuan Qiang Autonomous County in China.
        Leg. Med. 2020; 45https://doi.org/10.1016/j.legalmed.2020.101714
        • Editor Group
        A Brief History of Qiang Nationality.
        Nationality Publishing House, Beijing2008: 7-8
        • Wang C.C.
        • Wang L.X.
        • Shrestha R.
        • Zhang M.
        • Huang X.Y.
        • Hu K.
        • Jin L.
        • Li H.
        Genetic structure of Qiangic populations residing in the Western Sichuan corridor.
        PLoS One. 2014; 9https://doi.org/10.1371/journal.pone.0103772
        • Kang L.
        • Lu Y.
        • Wang C.
        • Hu K.
        • Chen F.
        • Liu K.
        • Li S.
        • Jin L.
        • Li H.
        Y-chromosome O3 haplogroup diversity in Sino-Tibetan populations reveals two migration routes into the Eastern Himalayas.
        Ann. Hum. Genet. 2012; 76: 92-99https://doi.org/10.1111/j.1469-1809.2011.00690.x
        • Li J.
        • Zeng W.
        • Zhang Y.
        • Ko A.M.S.
        • Li C.
        • Zhu H.
        • Fu Q.
        • Zhou H.
        Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese.
        BMC Evolut. Biol. 2017; 17: 1-13https://doi.org/10.1186/s12862-017-1082-0
        • Bin Zhao Y.
        • Li H.J.
        • Li S.N.
        • Yu C.C.
        • Gao S.Z.
        • Xu Z.
        • Jin L.
        • Zhu H.
        • Zhou H.
        Ancient DNA evidence supports the contribution of Di-Qiang people to the han Chinese gene pool.
        Am. J. Phys. Anthropol. 2011; 144: 258-268https://doi.org/10.1002/ajpa.21399
        • Liu L.
        Chin. Neolit.: Trajectories Early S. 2005; https://doi.org/10.1017/CBO9780511489624
        • Gao S.Z.
        • Zhang Y.
        • Wei D.
        • Li H.J.
        • Bin Zhao Y.
        • Cui Y.Q.
        • Zhou H.
        Ancient DNA reveals a migration of the ancient Di-qiang populations into Xinjiang as early as the early Bronze Age.
        Am. J. Phys. Anthropol. 2015; 157: 71-80https://doi.org/10.1002/ajpa.22690
        • Li J.
        • Zeng W.
        • Zhang Y.
        • Ko A.M.S.
        • Li C.
        • Zhu H.
        • Fu Q.
        • Zhou H.
        Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese.
        BMC Evolut. Biol. 2017; 17https://doi.org/10.1186/s12862-017-1082-0
        • Van Oven M.
        • Van Geystelen A.
        • Kayser M.
        • Decorte R.
        • Larmuseau M.H.
        Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome.
        Hum. Mutat. 2014; 35: 187-191https://doi.org/10.1002/humu.22468
        • Walsh P.S.
        • Metzger D.A.
        • Higuchi R.
        Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material.
        Biotechniques. 1991; 10: 506-513https://doi.org/10.2144/000114018
        • Wang F.
        • Song F.
        • Song M.
        • Li J.
        • Xie M.
        • Hou Y.
        Genetic reconstruction and phylogenetic analysis by 193 Y-SNPs and 27 Y-STRs in a Chinese Yi ethnic group.
        Electrophoresis. 2021; 42: 1480-1487https://doi.org/10.1002/elps.202100003
        • Wang M.
        • He G.
        • Zou X.
        • Liu J.
        • Ye Z.
        • Ming T.
        • Du W.
        • Wang Z.
        • Hou Y.
        Genetic insights into the paternal admixture history of Chinese Mongolians via high-resolution customized Y-SNP SNaPshot panels.
        Forensic Sci. Int.: Genet. 2021; 54102565https://doi.org/10.1016/j.fsigen.2021.102565
        • Lang M.
        • Liu H.
        • Song F.
        • Qiao X.
        • Ye Y.
        • Ren H.
        • Li J.
        • Huang J.
        • Xie M.
        • Chen S.
        • Song M.
        • Zhang Y.
        • Qian X.
        • Yuan T.
        • Wang Z.
        • Liu Y.
        • Wang M.
        • Liu Y.
        • Liu J.
        • Hou Y.
        Forensic characteristics and genetic analysis of both 27 Y-STRs and 143 Y-SNPs in Eastern Han Chinese population.
        Forensic Sci. Int.: Genet. 2019; 42: e13-e20https://doi.org/10.1016/j.fsigen.2019.07.011
        • Wang F.
        • Song F.
        • Song M.
        • Luo H.
        • Hou Y.
        Genetic structure and paternal admixture of the modern Chinese Zhuang population based on 37 Y-STRs and 233 Y-SNPs.
        Forensic Sci. Int.: Genet. 2022; 58102681https://doi.org/10.1016/j.fsigen.2022.102681
        • Xie M.
        • Song F.
        • Li J.
        • Lang M.
        • Luo H.
        • Wang Z.
        • Wu J.
        • Li C.
        • Tian C.
        • Wang W.
        • Ma H.
        • Song Z.
        • Fan Y.
        • Hou Y.
        Genetic substructure and forensic characteristics of Chinese Hui populations using 157 Y-SNPs and 27 Y-STRs.
        Forensic Sci. Int.: Genet. 2019; 41: 11-18https://doi.org/10.1016/j.fsigen.2019.03.022
        • Song M.
        • Wang Z.
        • Zhang Y.
        • Zhao C.
        • Lang M.
        • Xie M.
        • Qian X.
        • Wang M.
        • Hou Y.
        Forensic characteristics and phylogenetic analysis of both Y-STR and Y-SNP in the Li and Han ethnic groups from Hainan Island of China.
        Forensic Sci. Int.: Genet. 2019; 39: e14-e20https://doi.org/10.1016/j.fsigen.2018.11.016
        • Song F.
        • Song M.
        • Luo H.
        • Xie M.
        • Wang X.
        • Dai H.
        • Hou Y.
        Paternal genetic structure of Kyrgyz ethnic group in China revealed by high-resolution Y-chromosome STRs and SNPs.
        Electrophoresis. 2021; https://doi.org/10.1002/elps.202100142
        • Gouy A.
        • Zieger M.
        STRAF—A convenient online tool for STR data evaluation in forensic genetics.
        Forensic Sci. Int.: Genet. 2017; 30: 148-151https://doi.org/10.1016/j.fsigen.2017.07.007
        • Nei M.
        • Tajima F.
        DNA polymorphism detectable by restriction endonucleases.
        Genetics. 1981; 97: 145-163https://doi.org/10.1007/s004420050857
        • Bandelt H.J.
        • Forster P.
        • Röhl A.
        Median-joining networks for inferring intraspecific phylogenies.
        Mol. Biol. Evol. 1999; 16: 37-48https://doi.org/10.1093/oxfordjournals.molbev.a026036
        • R Core Team
        R: A language and environment for statistical computing.
        R Foundation for Statistical Computing, Vienna, Austria2020 (URL)
        • Hill V.
        • Baele G.
        Bayesian estimation of past population dynamics in BEAST 1.10 using the skygrid coalescent model.
        Mol. Biol. Evol. 2019; 36https://doi.org/10.1093/molbev/msz172
        • Hill V.
        • Baele G.
        Bayesian estimation of past population dynamics in BEAST 1.10 Using the skygrid coalescent model.
        Mol. Biol. Evol. 2019; 36: 2620-2628https://doi.org/10.1093/molbev/msz172
        • Roewer L.
        • Andersen M.M.
        • Ballantyne J.
        • Butler J.M.
        • Caliebe A.
        • Corach D.
        • D’Amato M.E.
        • Gusmão L.
        • Hou Y.
        • de Knijff P.
        • Parson W.
        • Prinz M.
        • Schneider P.M.
        • Taylor D.
        • Vennemann M.
        • Willuweit S.
        DNA Commission of the International Society of Forensic Genetics (ISFG): recommendations on the interpretation of Y-STR results in forensic analysis.
        Forensic Sci. Int.: Genet. 2020; 0102308https://doi.org/10.1016/j.fsigen.2020.102308
        • Willuweit S.
        • Roewer L.
        The new y chromosome haplotype reference database.
        Forensic Sci. Int.: Genet. 2015; 15: 43-48https://doi.org/10.1016/j.fsigen.2014.11.024
        • Gusmão L.
        • Butler J.M.
        • Linacre A.
        • Parson W.
        • Parson W.
        • Schneider P.M.
        • Carracedo A.
        Revised guidelines for the publication of genetic population data.
        Forensic Sci. Int.: Genet. 2017; 30: 160-163https://doi.org/10.1016/j.fsigen.2017.06.007
        • Zhong H.
        • Shi H.
        • Bin Qi X.
        • Duan Z.Y.
        • Tan P.P.
        • Jin L.
        • Su B.
        • Ma R.Z.
        Extended y chromosome investigation suggests postglacial migrations of modern humans into East Asia via the northern route.
        Mol. Biol. Evol. 2011; 28: 717-727https://doi.org/10.1093/molbev/msq247
        • Balaresque P.
        • Poulet N.
        • Cussat-Blanc S.
        • Gerard P.
        • Quintana-Murci L.
        • Heyer E.
        • Jobling M.A.
        Y-chromosome descent clusters and male differential reproductive success: young lineage expansions dominate Asian pastoral nomadic populations.
        Eur. J. Hum. Genet. 2015; 23: 1413-1422https://doi.org/10.1038/ejhg.2014.285
        • Zeng T.C.
        • Aw A.J.
        • Feldman M.W.
        Cultural hitchhiking and competition between patrilineal kin groups explain the post-Neolithic Y-chromosome bottleneck.
        Nat. Commun. 2018; 9https://doi.org/10.1038/s41467-018-04375-6
        • Grugni V.
        • Raveane A.
        • Ongaro L.
        • Battaglia V.
        • Trombetta B.
        • Colombo G.
        • Capodiferro M.R.
        • Olivieri A.
        • Achilli A.
        • Perego U.A.
        • Motta J.
        • Tribaldos M.
        • Woodward S.R.
        • Ferretti L.
        • Cruciani F.
        • Torroni A.
        • Semino O.
        Analysis of the human Y-chromosome haplogroup Q characterizes ancient population movements in Eurasia and the Americas.
        BMC Biol. 2019; 17: 1-14https://doi.org/10.1186/s12915-018-0622-4
        • Perez-Benedico D.
        • La Salvia J.
        • Zeng Z.
        • Herrera G.A.
        • Garcia-Bertrand R.
        • Herrera R.J.
        Mayans: a y chromosome perspective.
        Eur. J. Hum. Genet. 2016; 24: 1352-1358https://doi.org/10.1038/ejhg.2016.18
        • Watahiki H.
        • Fujii K.
        • Fukagawa T.
        • Mita Y.
        • Kitayama T.
        • Mizuno N.
        Polymorphisms and microvariant sequences in the Japanese population for 25 Y-STR markers and their relationships to Y-chromosome haplogroups.
        Forensic Sci. Int.: Genet. 2019; 41: e1-e7https://doi.org/10.1016/j.fsigen.2019.03.004
        • Lall G.M.
        • Larmuseau M.H.D.
        • Wetton J.H.
        • Batini C.
        • Hallast P.
        • Huszar T.I.
        • Zadik D.
        • Aase S.
        • Baker T.
        • Balaresque P.
        • Bodmer W.
        • Børglum A.D.
        • de Knijff P.
        • Dunn H.
        • Harding S.E.
        • Løvvik H.
        • Dupuy B.M.
        • Pamjav H.
        • Tillmar A.O.
        • Tomaszewski M.
        • Tyler-Smith C.
        • Verdugo M.P.
        • Winney B.
        • Vohra P.
        • Story J.
        • King T.E.
        • Jobling M.A.
        Subdividing Y-chromosome haplogroup R1a1 reveals Norse Viking dispersal lineages in Britain.
        Eur. J. Hum. Genet. 2021; 29: 512-523https://doi.org/10.1038/s41431-020-00747-z
        • Nagy P.L.
        • Olasz J.
        • Neparáczki E.
        • Rouse N.
        • Kapuria K.
        • Cano S.
        • Chen H.
        • Di Cristofaro J.
        • Runfeldt G.
        • Ekomasova N.
        • Maróti Z.
        • Jeney J.
        • Litvinov S.
        • Dzhaubermezov M.
        • Gabidullina L.
        • Szentirmay Z.
        • Szabados G.
        • Zgonjanin D.
        • Chiaroni J.
        • Behar D.M.
        • Khusnutdinova E.
        • Underhill P.A.
        • Kásler M.
        Determination of the phylogenetic origins of the Árpád Dynasty based on Y chromosome sequencing of Béla the third.
        Eur. J. Hum. Genet. 2021; 29: 164-172https://doi.org/10.1038/s41431-020-0683-z
        • Underhill P.A.
        • Poznik G.D.
        • Rootsi S.
        • Järve M.
        • Lin A.A.
        • Wang J.
        • Passarelli B.
        • Kanbar J.
        • Myres N.M.
        • King R.J.
        • Di Cristofaro J.
        • Sahakyan H.
        • Behar D.M.
        • Kushniarevich A.
        • Šarac J.
        • Šaric T.
        • Rudan P.
        • Pathak A.K.
        • Chaubey G.
        • Grugni V.
        • Semino O.
        • Yepiskoposyan L.
        • Bahmanimehr A.
        • Farjadian S.
        • Balanovsky O.
        • Khusnutdinova E.K.
        • Herrera R.J.
        • Chiaroni J.
        • Bustamante C.D.
        • Quake S.R.
        • Kivisild T.
        • Villems R.
        The phylogenetic and geographic structure of Y-chromosome haplogroup R1a.
        Eur. J. Hum. Genet. 2015; 23: 124-131https://doi.org/10.1038/ejhg.2014.50
        • Jeong C.
        • Wang K.
        • Wilkin S.
        • Taylor W.T.T.
        • Miller B.K.
        • Bemmann J.H.
        • Stahl R.
        • Chiovelli C.
        • Knolle F.
        • Ulziibayar S.
        • Khatanbaatar D.
        • Erdenebaatar D.
        • Erdenebat U.
        • Ochir A.
        • Ankhsanaa G.
        • Vanchigdash C.
        • Ochir B.
        • Munkhbayar C.
        • Tumen D.
        • Kovalev A.
        • Kradin N.
        • Bazarov B.A.
        • Miyagashev D.A.
        • Konovalov P.B.
        • Zhambaltarova E.
        • Miller A.V.
        • Haak W.
        • Schiffels S.
        • Krause J.
        • Boivin N.
        • Erdene M.
        • Hendy J.
        • Warinner C.
        A Dynamic 6,000-Year Genetic History of Eurasia’s Eastern Steppe.
        Cell. 2020; 183: 890-904.e29https://doi.org/10.1016/j.cell.2020.10.015
        • Zerjal T.
        • Xue Y.
        • Bertorelle G.
        • Wells R.S.
        • Bao W.
        • Zhu S.
        • Qamar R.
        • Ayub Q.
        • Mohyuddin A.
        • Fu S.
        • Li P.
        • Yuldasheva N.
        • Ruzibakiev R.
        • Xu J.
        • Shu Q.
        • Du R.
        • Yang H.
        • Hurles M.E.
        • Robinson E.
        • Gerelsaikhan T.
        • Dashnyam B.
        • Mehdi S.Q.
        • Tyler-Smith C.
        The genetic legacy of the Mongols.
        Am. J. Hum. Genet. 2003; 72: 717-721https://doi.org/10.1086/367774
        • Wu Q.
        • Cheng H.Z.
        • Sun N.
        • Ma P.C.
        • Sun J.
        • Yao H.B.
        • Xie Y.M.
        • Li Y.L.
        • Meng S.L.
        • Zhabagin M.
        • Cai Y.H.
        • Lu D.R.
        • Yan S.
        • Wei L.H.
        Phylogenetic analysis of the Y-chromosome haplogroup C2b-F1067, a dominant paternal lineage in Eastern Eurasia.
        J. Hum. Genet. 2020; https://doi.org/10.1038/s10038-020-0775-1
        • Wei L.H.
        • Yan S.
        • Lu Y.
        • Wen S.Q.
        • Huang Y.Z.
        • Wang L.X.
        • Li S.L.
        • Yang Y.J.
        • Wang X.F.
        • Zhang C.
        • Xu S.H.
        • Yao D.L.
        • Jin L.
        • Li H.
        Whole-sequence analysis indicates that the y chromosome C2∗-Star Cluster traces back to ordinary Mongols, rather than Genghis Khan /631/208/457 /631/208/514 article.
        Eur. J. Hum. Genet. 2018; 26: 230-237https://doi.org/10.1038/s41431-017-0012-3
        • Liu B.L.
        • Ma P.C.
        • Wang C.Z.
        • Yan S.
        • Yao H.B.
        • Li Y.L.
        • Xie Y.M.
        • Meng S.L.
        • Sun J.
        • Cai Y.H.
        • Sarengaowa S.
        • Li H.
        • Cheng H.Z.
        • Wei L.H.
        Paternal origin of Tungusic-speaking populations: insights from the updated phylogenetic tree of Y-chromosome haplogroup C2a-M86.
        Am. J. Hum. Biol. 2021; 33https://doi.org/10.1002/ajhb.23462
        • Hammer M.F.
        • Karafet T.M.
        • Park H.
        • Omoto K.
        • Harihara S.
        • Stoneking M.
        • Horai S.
        Dual origins of the Japanese: common ground for hunter-gatherer and farmer Y chromosomes.
        J. Hum. Genet. 2006; https://doi.org/10.1007/s10038-005-0322-0
        • Watahiki H.
        • Fujii K.
        • Fukagawa T.
        • Mita Y.
        • Kitayama T.
        • Mizuno N.
        Polymorphisms and microvariant sequences in the Japanese population for 25 Y-STR markers and their relationships to Y-chromosome haplogroups.
        Forensic Sci. Int.: Genet. 2019; 41: e1-e7https://doi.org/10.1016/j.fsigen.2019.03.004
        • Wang C.C.
        • Yeh H.Y.
        • Popov A.N.
        • Zhang H.Q.
        • Matsumura H.
        • Sirak K.
        • Cheronet O.
        • Kovalev A.
        • Rohland N.
        • Kim A.M.
        • Mallick S.
        • Bernardos R.
        • Tumen D.
        • Zhao J.
        • Liu Y.C.
        • Liu J.Y.
        • Mah M.
        • Wang K.
        • Zhang Z.
        • Adamski N.
        • Broomandkhoshbacht N.
        • Callan K.
        • Candilio F.
        • Carlson K.S.D.
        • Culleton B.J.
        • Eccles L.
        • Freilich S.
        • Keating D.
        • Lawson A.M.
        • Mandl K.
        • Michel M.
        • Oppenheimer J.
        • Özdoğan K.T.
        • Stewardson K.
        • Wen S.
        • Yan S.
        • Zalzala F.
        • Chuang R.
        • Huang C.J.
        • Looh H.
        • Shiung C.C.
        • Nikitin Y.G.
        • Tabarev A.V.
        • Tishkin A.A.
        • Lin S.
        • Sun Z.Y.
        • Wu X.M.
        • Yang T.L.
        • Hu X.
        • Chen L.
        • Du H.
        • Bayarsaikhan J.
        • Mijiddorj E.
        • Erdenebaatar D.
        • Iderkhangai T.O.
        • Myagmar E.
        • Kanzawa-Kiriyama H.
        • Nishino M.
        • Shinoda K. ichi
        • Shubina O.A.
        • Guo J.
        • Cai W.
        • Deng Q.
        • Kang L.
        • Li D.
        • Li D.
        • Lin R.
        • Nini
        • Shrestha R.
        • Wang L.X.
        • Wei L.
        • Xie G.
        • Yao H.
        • Zhang M.
        • He G.
        • Yang X.
        • Hu R.
        • Robbeets M.
        • Schiffels S.
        • Kennett D.J.
        • Jin L.
        • Li H.
        • Krause J.
        • Pinhasi R.
        • Reich D.
        Genomic insights into the formation of human populations in East Asia.
        Nature. 2021; 591: 413-419https://doi.org/10.1038/s41586-021-03336-2
        • Wang L.X.
        • Lu Y.
        • Zhang C.
        • Wei L.H.
        • Yan S.
        • Huang Y.Z.
        • Wang C.C.
        • Mallick S.
        • Wen S.Q.
        • Jin L.
        • Xu S.H.
        • Li H.
        Reconstruction of Y-chromosome phylogeny reveals two neolithic expansions of Tibeto-Burman populations.
        Mol. Genet. Genom. 2018; 293: 1293-1300https://doi.org/10.1007/s00438-018-1461-2
        • Ning C.
        • Yan S.
        • Hu K.
        • Cui Y.Q.
        • Jin L.
        Refined phylogenetic structure of an abundant East Asian Y-chromosomal haplogroup O∗-M134.
        Eur. J. Hum. Genet. 2016; 24: 307-309https://doi.org/10.1038/ejhg.2015.183
        • Xu H.
        • Wang C.C.
        • Shrestha R.
        • Wang L.X.
        • Zhang M.
        • He Y.
        • Kidd J.R.
        • Kidd K.K.
        • Jin L.
        • Li H.
        Inferring population structure and demographic history using Y-STR data from worldwide populations.
        Mol. Genet. Genom. 2014; 290: 141-150https://doi.org/10.1007/s00438-014-0903-8