Advertisement

Development of a multiplex assay for detection of autosomal and Y-chromosomal STRs, assessment of the degradation state of mitochondrial DNA and presence of mitochondrial length heteroplasmies

Published:September 13, 2022DOI:https://doi.org/10.1016/j.fsigen.2022.102775

      Highlights

      • Simultaneous analysis of autosomal and Y-chromosomal STRs as well as mitochondrial targets.
      • Useful screening tool particularly for low template samples.
      • Assistance with decision for downstream analysis.
      • Conservation of valuable sample extract.

      Abstract

      The current focus in most routine forensic casework is detection of autosomal or gonosomal Short Tandem Repeats (STRs). With increasing degradation, STR analysis tends to be less successful up to complete failure. For challenging samples such as telogen hair roots and shafts, touch DNA samples or skeletal remains, mitochondrial DNA (mtDNA) analysis provides a powerful tool. Determination of DNA quantity is an important part in the casework workflow. Several ready-to-use kits are commercially available for nuclear DNA targets. However, quantification of mtDNA targets requires the establishment of an in-house method. Some assays even contain assessment of degradation, which alleviates the choice of target enrichment for sequencing through medium or small amplicons. As Sanger-type Sequencing (STS) still remains the golden standard in many laboratories, identification of heteroplasmies in C-tract regions prior to the sequencing reaction is advantageous. Firstly, primer selection can be expanded with primers binding near the C-tract and secondly, determination of the dominant variant is straightforward. All those quantity (nuclear and mtDNA) and quality (degradation and length heteroplasmies) evaluations usually require at least two separate reactions. Therefore, the aim of this project was the combination of all these targets in one multiplex assay using capillary electrophoresis to spare valuable sample extract. Amplification of representative autosomal and Y-chromosomal STRs allows estimate of success of (Y-)STR analysis. Simultaneously, five length heteroplasmies in the mitochondrial control region are targeted as well as three conservative regions of differing fragment lengths for assessment of the mitochondrial degradation state. Based on the outcome of this assay, forensic examiners can decide if STR analysis may be suitable. In case of absent STR peaks, appropriate proceeding of mtDNA sequencing can be determined.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Melton T.
        • Dimick G.
        • Higgins B.
        • Lindstrom L.
        • Nelson K.
        Forensic mitochondrial DNA analysis of 691 casework hairs.
        J. Forensic Sci. 2005; 50: 1-8https://doi.org/10.1520/JFS2004230
        • Coble M.D.
        • Loreille O.M.
        • Wadhams M.J.
        • Edson S.M.
        • Maynard K.
        • Meyer C.E.
        • Niederstätter H.
        • Berger C.
        • Berger B.
        • Falsetti A.B.
        • Gill P.
        • Parson W.
        • Finelli L.N.
        Mystery solved: The identification of the two missing Romanov children using DNA analysis.
        PLoS One. 2009; 4: 1-9https://doi.org/10.1371/journal.pone.0004838
        • Satoh M.
        • Kuroiwa T.
        Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell.
        Exp. Cell Res. 1991; 196: 137-140https://doi.org/10.1016/0014-4827(91)90467-9
        • Parsons T.J.
        • Muniec D.S.
        • Sullivan K.
        • Woodyatt N.
        • Alliston-Greiner R.
        • Wilson M.R.
        • Berry D.L.
        • Holland K.A.
        • Weedn V.W.
        • Gill P.
        • Holland M.M.
        A high observed substitution rate in the human mitochondrial DNA control region.
        Nat. Genet. 1997; 15: 363-368https://doi.org/10.1038/ng0497-363
        • Holland M.M.
        • Parsons T.J.
        Mitochondrial DNA sequence analysis - validation and use for forensic casework.
        Forensic Sci. Rev. 1999; 11: 21-50
        • Kayser M.
        • de Knijff P.
        Improving human forensics through advances in genetics, genomics and molecular biology.
        Nat. Rev. Genet. 2011; 12: 179-192https://doi.org/10.1038/nrg2952
        • Just R.S.
        • Leney M.D.
        • Barritt S.M.
        • Los C.W.
        • Smith B.C.
        • Holland T.D.
        • Parsons T.J.
        The use of mitochondrial DNA single nucleotide polymorphisms to assist in the resolution of three challenging forensic cases.
        J. Forensic Sci. 2009; 54: 887-891https://doi.org/10.1111/j.1556-4029.2009.01069.x
        • Sturk K.A.
        • Coble M.D.
        • Barritt S.M.
        • Parsons T.J.
        • Just R.S.
        The application of mtDNA SNPs to a forensic case.
        Forensic Sci. Int. Genet. Suppl. Ser. 2008; 1: 295-297https://doi.org/10.1016/j.fsigss.2007.10.148
        • Just R.S.
        • Scheible M.K.
        • Fast S.A.
        • Sturk-Andreaggi K.
        • Röck A.W.
        • Bush J.M.
        • Higginbotham J.L.
        • Peck M.A.
        • Ring J.D.
        • Huber G.E.
        • Xavier C.
        • Strobl C.
        • Lyons E.A.
        • Diegoli T.M.
        • Bodner M.
        • Fendt L.
        • Kralj P.
        • Nagl S.
        • Niederwieser D.
        • Zimmermann B.
        • Parson W.
        • Irwin J.A.
        Full mtGenome reference data: Development and characterization of 588 forensic-quality haplotypes representing three U.S. populations.
        Forensic Sci. Int. Genet. 2015; 14: 141-155https://doi.org/10.1016/j.fsigen.2014.09.021
        • Ewing M.M.
        • Thompson J.M.
        • McLaren R.S.
        • Purpero V.M.
        • Thomas K.J.
        • Dobrowski P.A.
        • Degroot G.A.
        • Romsos E.L.
        • Storts D.R.
        Human DNA quantification and sample quality assessment: developmental validation of the PowerQuant® system.
        Forensic Sci. Int. Genet. 2016; 23: 166-177https://doi.org/10.1016/j.fsigen.2016.04.007
        • Holt A.
        • Wootton S.C.
        • Mulero J.J.
        • Brzoska P.M.
        • Langit E.
        • Green R.L.
        Developmental validation of the Quantifiler® HP and Trio Kits for human DNA quantification in forensic samples.
        Forensic Sci. Int. Genet. 2016; 21: 145-157https://doi.org/10.1016/j.fsigen.2015.12.007
        • Vraneš M.
        • Scherer M.
        • Elliott K.
        Development and validation of the Investigator® Quantiplex Pro Kit for qPCR-based examination of the quantity and quality of human DNA in forensic samples.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e518-e519https://doi.org/10.1016/j.fsigss.2017.09.207
        • Holmes A.S.
        • Houston R.
        • Elwick K.
        • Gangitano D.
        • Hughes-Stamm S.
        Evaluation of four commercial quantitative real-time PCR kits with inhibited and degraded samples.
        Int. J. Leg. Med. 2018; 132: 691-701https://doi.org/10.1007/s00414-017-1745-9
        • Niederstätter H.
        • Köchl S.
        • Grubwieser P.
        • Pavlic M.
        • Steinlechner M.
        • Parson W.
        A modular real-time PCR concept for determining the quantity and quality of human nuclear and mitochondrial DNA.
        Forensic Sci. Int. Genet. 2007; 1: 29-34https://doi.org/10.1016/j.fsigen.2006.10.007
        • Fregel R.
        • Almeida M.
        • Betancor E.
        • Suárez N.M.
        • Pestano J.
        Reliable nuclear and mitochondrial DNA quantification for low copy number and degraded forensic samples.
        Forensic Sci. Int. Genet. Suppl. Ser. 2011; 3: 303-304https://doi.org/10.1016/j.fsigss.2011.09.014
        • Phillips N.R.
        • Sprouse M.L.
        • Roby R.K.
        Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: a multiplex real-time PCR assay.
        Sci. Rep. 2014; 4: 1-7https://doi.org/10.1038/srep03887
        • Goodwin C.
        • Higgins D.
        • Tobe S.S.
        • Austin J.J.
        • Wotherspoon A.
        • Gahan M.E.
        • McNevin D.
        Singleplex quantitative real-time PCR for the assessment of human mitochondrial DNA quantity and quality.
        Forensic Sci. Med. Pathol. 2018; 14: 70-75https://doi.org/10.1007/s12024-017-9944-8
        • Xavier C.
        • Eduardoff M.
        • Strobl C.
        • Parson W.
        SD quants—sensitive detection tetraplex-system for nuclear and mitochondrial DNA quantification and degradation inference.
        Forensic Sci. Int. Genet. 2019; 42: 39-44https://doi.org/10.1016/j.fsigen.2019.06.004
        • Eichmann C.
        • Parson W.
        “Mitominis”: multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.
        Int. J. Leg. Med. 2008; 122: 385-388https://doi.org/10.1007/s00414-008-0227-5
        • Eduardoff M.
        • Xavier C.
        • Strobl C.
        • Casas-Vargas A.
        • Parson W.
        Optimized mtDNA control region primer extension capture analysis for forensically relevant samples and highly compromised mtDNA of different age and origin.
        Genes (Basel). 2017; 8: 1-17https://doi.org/10.3390/genes8100237
        • Bendall K.E.
        • Sykes B.C.
        Length heteroplasmy in the first hypervariable segment of the human mtDNA control region.
        Am. J. Hum. Genet. 1995; 57: 248-256
        • Prieto L.
        • Montesino M.
        • Rodrı́guez-Monge A.
        • Garcı́a C.
        • Garcı́a E.
        • Rivas E.
        • Salas A.
        Measuring by fragment analysis the proportion of length variants in samples carrying length heteroplasmy at the homopolymeric C-stretch in mitochondrial HVII region.
        Int. Congr. Ser. 2004; 1261: 103-105https://doi.org/10.1016/j.ics.2003.11.016
        • Parson W.
        • Gusmão L.
        • Hares D.R.
        • Irwin J.A.
        • Mayr W.R.
        • Morling N.
        • Pokorak E.
        • Prinz M.
        • Salas A.
        • Schneider P.M.
        • Parsons T.J.
        DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing.
        Forensic Sci. Int. Genet. 2014; 13: 134-142https://doi.org/10.1016/j.fsigen.2014.07.010
        • Stewart J.E.B.
        • Fisher C.L.
        • Aagaard P.J.
        • Wilson M.R.
        • Isenberg A.R.
        • Polanskey D.
        • Pokorak E.
        • DiZinno J.A.
        • Budowle B.
        Length variation in HV2 of the human mitochondrial DNA control region.
        J. Forensic Sci. 2001; 46: 15059Jhttps://doi.org/10.1520/JFS15059J
        • Bandelt H.J.
        • Parson W.
        Consistent treatment of length variants in the human mtDNA control region: a reappraisal.
        Int. J. Leg. Med. 2008; 122: 11-21https://doi.org/10.1007/s00414-006-0151-5
        • Sturk-Andreaggi K.
        • Parson W.
        • Allen M.
        • Marshall C.
        Impact of the sequencing method on the detection and interpretation of mitochondrial DNA length heteroplasmy.
        Forensic Sci. Int. Genet. 2020; 44102205https://doi.org/10.1016/j.fsigen.2019.102205
        • Salas A.
        • Lareu M.V.
        • Carracedo A.
        Heteroplasmy in mtDNA and the weight of evidence in forensic mtDNA analysis: a case report.
        Int. J. Leg. Med. 2001; 114: 186-190https://doi.org/10.1007/s004140000164
        • Berger C.
        • Hatzer-Grubwieser P.
        • Hohoff C.
        • Parson W.
        Evaluating sequence-derived mtDNA length heteroplasmy by amplicon size analysis.
        Forensic Sci. Int. Genet. 2011; 5: 142-145https://doi.org/10.1016/j.fsigen.2010.10.002
        • Lutz-Bonengel S.
        • Sänger T.
        • Pollak S.
        • Szibor R.
        Different methods to determine length heteroplasmy within the mitochondrial control region.
        Int. J. Leg. Med. 2004; 118: 274-281https://doi.org/10.1007/s00414-004-0457-0
        • Lutz-Bonengel S.
        • Schmidt U.
        • Sänger T.
        • Heinrich M.
        • Schneider P.M.
        • Pollak S.
        Analysis of mitochondrial length heteroplasmy in monozygous and non-monozygous siblings.
        Int. J. Leg. Med. 2008; 122: 315-321https://doi.org/10.1007/s00414-008-0240-8
        • Oberacher H.
        • Niederstätter H.
        • Parson W.
        Liquid chromatography-electrospray ionization mass spectrometry for simultaneous detection of mtDNA length and nucleotide polymorphisms.
        Int. J. Leg. Med. 2007; 121: 57-67https://doi.org/10.1007/s00414-006-0117-7
        • Wiegand P.
        • Klein R.
        • Braunschweiger G.
        • Hohoff C.
        • Brinkmann B.
        Short amplicon STR multiplex for stain typing.
        Int. J. Leg. Med. 2006; 120: 160-164https://doi.org/10.1007/s00414-005-0048-8
        • Müller K.
        • der DNA-Analyse Optimierung
        für degradierte biologische Spuren.
        Univ. Ulm. 2010; https://doi.org/10.18725/OPARU-2005
        • Untergasser A.
        • Cutcutache I.
        • Koressaar T.
        • Ye J.
        • Faircloth B.C.
        • Remm M.
        • Rozen S.G.
        Primer3-new capabilities and interfaces.
        Nucleic Acids Res. 2012; 40: 1-12https://doi.org/10.1093/nar/gks596
      1. M.D. Timken, K.L. Swango, C. Orrego, M.D. Chong, M.R. Buoncristiani, Quantitation of DNA for Forensic DNA Typing by qPCR (quantitative PCR): Singleplex and Multiplex Modes for Nuclear and Mitochondrial Genomes, and the Y Chromosome, Office. (2005).

        • Vallone P.M.
        • Butler J.M.
        AutoDimer: a screening tool for primer-dimer and hairpin structures.
        Biotechniques. 2004; 37: 226-231https://doi.org/10.2144/04372st03
        • Berger C.
        • Parson W.
        Mini-midi-mito: adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples.
        Forensic Sci. Int. Genet. 2009; 3: 149-153https://doi.org/10.1016/j.fsigen.2009.01.011
      2. Promega, PowerPlex® ESX and ESI 17 Fast Systems, (n.d.). 〈https://www.promega.de/products/forensic-dna-analysis-ce/str-amplification/powerplex-esx-17-and-esi-17-fast-systems/?catNum=DC1710〉.

      3. Promega, PowerPlex® Y23 System, (n.d.). 〈https://www.promega.de/products/forensic-dna-analysis-ce/str-amplification/powerplex-y23-system/?catNum=DC2305〉.

        • Marshall C.
        • Parson W.
        Interpreting NUMTs in forensic genetics: Seeing the forest for the trees.
        Forensic Sci. Int. Genet. 2021; 53102497https://doi.org/10.1016/j.fsigen.2021.102497
        • Fendt L.
        • Zimmermann B.
        • Daniaux M.
        • Parson W.
        Sequencing strategy for the whole mitochondrial genome resulting in high quality sequences.
        BMC Genom. 2009; 10: 1-11https://doi.org/10.1186/1471-2164-10-139
        • Naue J.
        • Hörer S.
        • Sänger T.
        • Strobl C.
        • Hatzer-Grubwieser P.
        • Parson W.
        • Lutz-Bonengel S.
        Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA.
        Mitochondrion. 2015; 20: 82-94https://doi.org/10.1016/j.mito.2014.12.002
        • Crespillo M.
        • Paredes M.R.
        • Prieto L.
        • Montesino M.
        • Salas A.
        • Albarran C.
        • V Á.-I.
        • Amorin A.
        • Berniell-Lee G.
        • Brehm A.
        • Carril J.C.
        • Corach D.
        • Cuevas N.
        • Di Lonardo A.M.
        • Doutremepuich C.
        • Espinheira R.M.
        • Espinoza M.
        • Gómez F.
        • González A.
        • Hernández A.
        • Hidalgo M.
        • Jimenez M.
        • Leite F.P.N.
        • López A.M.
        • López-Soto M.
        • Lorente J.A.
        • Pagano S.
        • Palacio A.M.
        • Pestano J.J.
        • Pinheiro M.F.
        • Raimondi E.
        • Ramón M.M.
        • Tovar F.
        • Vidal-Rioja L.
        • Vide M.C.
        • Whittle M.R.
        • Yunis J.J.
        • Garcia-Hirschfel J.
        Results of the 2003–2004 GEP-ISFG collaborative study on mitochondrial DNA: focus on the mtDNA profile of a mixed semen-saliva stain.
        Forensic Sci. Int. 2006; 160: 157-167https://doi.org/10.1016/j.forsciint.2005.09.005